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Abstract

We studied acetylhistidine (AcH), bare or microsolvated with a zinc cation by simu-

lations in isolation. First, a global search for minima of the potential energy surface

combining both, empirical and first-principles methods, is performed individually for

either one of five possible protonation states. Comparing the most stable structures

between tautomeric forms of negatively charged AcH shows a clear preference for con-

formers with the neutral imidazole ring protonated at the Nε2 atom. When adding

a zinc cation to the system, the situation is reversed and Nδ1-protonated structures

are energetically more favorable. Obtained minima structures then served as basis

for a benchmark study to examine the goodness of commonly applied levels of theory,

i.e. force fields, semi-empirical methods, density-functional approximations (DFA), and

wavefunction-based methods with respect to high-level coupled-cluster calculations, i.e.

the DLPNO-CCSD(T) method. All tested force fields and semi-empirical methods show

a poor performance in reproducing the energy hierarchies of conformers, in particular

of systems involving the zinc cation. Meta-GGA, hybrid, double hybrid DFAs, and

the MP2 method are able to describe the energetics of the reference method within

“chemical accuracy”, i.e. with a mean absolute error of less than 1 kcal/mol. Best

performance is found for the double hybrid DFA B3LYP+XYG3 with a mean absolute

error of 0.7 kcal/mol and a maximum error of 1.8 kcal/mol. While MP2 performs simi-

larly as B3LYP+XYG3, computational costs, i.e. timings, are increased by a factor of

4 in comparison due to the large basis sets required for accurate results.
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Introduction

Metal cations are essential to life, as approximately one third of the proteins in the human

body require a metal cofactor for biological function.1,2 They often play a crucial role in

shaping the three-dimensional structure of proteins and peptides. In their presence, peptides

often undergo significant conformational changes - usually imposing structural constraints -

that may alter important properties, e.g. binding sites, catalytic properties, and biological

functions. As an example, it is hypothesized that protein misfolding of Alzheimer’s Aβ-

amyloid peptides into aggregated senile plaques inside the human brain of Alzheimer patients

is promoted by metal ions such as zinc (Zn2+).3 Zinc ions are furthermore required for the

catalytic function of more than 200 enzymes,4 an example being carbonic anhydrase essential

to the process of carbon dioxide regulation.5

It is therefore much desirable to have a very good fundamental and detailed theoretical

understanding of interactions of metal cations with peptides. The goal of this research is to

investigate the energetics of peptides in conjunction with metal cations, with a strong focus

on benchmark systems consisting of either a bare acetylhistidine (AcH) or microsolvated with

a Zn2+ cation. The goodness of commonly applied theoretical levels of theory, i.e. force field

(FF), semi-empirical quantum chemistry methods, density-functional approximation (DFA),

and wavefunction-based methods is being assessed and evaluated with respect to high-level

coupled-cluster calculations. The main focus lies thereby on peptide structures in the gas-

phase as opposed to solvated systems. This is mainly due to the desire of studying the inner,

“undamped” interactions and forces of molecules and their correct description by theoretical

models without having to deal with models outside of the core problem, e.g. implicit solvent

treatment models, that provide an additional non-negligible uncertainty. Furthermore, the

chosen system of AcH serves as a benchmark system as it is still computationally feasible,

even for high-level methods, yet provides a challenging structure because of the tautomeric

form of its neutral imidazole ring.

Figure 1 shows chemical structures of AcH with the different protonation states in-
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Figure 1: Chemical structures of negatively charged AcH (upper row) showing the two
equivalent tautomeric forms of the neutral imidazole side chain. For neutral AcH (bottom
row), three different protonation states are theoretically possible.
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vestigated in this work: Negatively charged AcH (upper row in Figure 1) has two equiv-

alent tautomeric forms of the neutral imidazole side chain. The two forms are labeled

AcH(Nδ1)−COO– and AcH(Nε2)−COO– , meaning that either the Nδ1 or the Nε2 atom is

protonated in the imidazole ring. For bare neutral AcH (bottom row in Figure 1), three

different protonation states are theoretically possible: Besides the two equivalent tautomeric

forms, labeled AcH(Nδ1)−COOH and AcH(Nε2)−COOH, that have a neutral carboxyl group

at the C-terminus (−COOH), a third form exists, labeled AcH+−COO– , which has both the

Nδ1 and Nε2 nitrogens of the imidazole protonated but the carboxyl group at the C-terminus

deprotonated (−COO– ). As already pointed out, either system is studied bare as well as

microsolvated with a Zn2+ cation, resulting in ten different systems to be investigated.

Benchmark calculations for small systems containing a zinc cation have been done in

the past. Amin and Truhlar set up a benchmark database of Zn coordination compounds

with O, S, NH3, H2O, OH, SCH3, and H ligands.6 Using coupled cluster calculations with

augmented polarized triple-ζ basis sets as the reference, 39 density functionals and seven

more approximate molecular orbital theories were tested. They found that DFT overall

significantly outperformed semi-empirical methods. Best performance was generally found

for exchange-correlation functionals containing a portion of Hartree-Fock exchange. Out of

the functionals that contained no Hartree-Fock exchange, M06-L7 displayed the best perfor-

mance. Similarly, Rayón et al. tested the performance of five different functionals against

MP28,9 and CCSD(T)10 calculations, with the B3LYP11,12 functional performing best.13

Weaver et al. predicted nine ZnX complexes (X= Zn, H, O, F2, S, Cl, Cl2, CH3, (CH3)2)

using 14 density functionals, MP2 calculations and the CCSD and CCSD(T) coupled-cluster

methods applying correlation consistent triple-ζ basis sets.14 They found that BLYP,15,16

B3LYP, MP2, CCSD and CCSD(T) showed poor performances based on accuracy, which for

the latter three wavefunction based methods might be caused by a missing complete basis set

description17 or the slow-converging correlation contribution of the zinc electrons that may

lead to large and conformation dependent basis set superposition errors (BSSE).18,19 Gutten
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et al. evaluated the performance of the wavefunction-based MP2 method as well as several

DFA xc functionals with respect to CCSD(T) using gas-phase complexation energies calcu-

lated for five model complexes and four metal ions (Fe2+, Cu2+, Zn2+, Cd2+).20 Reasonable

agreement was found for MP2 with values usually within 1.5 kcal/mol from the reference

values, while DFT performed less satisfactory, although the appropriateness of the models

may be significantly altered when combining them with advanced solvation models.21 For

certain complexes containing metal-ligand bonds, large errors in the gas-phase complexation

energies (with values up to 20 kcal/mol) were reported. Performance concerning geometry

optimization was found to be satisfactory already using the PBE xc functional on the GGA

DFT level. In the benchmark studies by Navrátil et al. on activation and reaction ener-

gies for four model systems of peptide bond hydrolysis in an ion-free environment and in

presence of one and two zinc ions, reasonably good performance was found for several DFAs

and MP2 when comparing to CCSD(T)-obtained results.22 Best performance for calculating

activation barriers was achieved when using the B3LYP or the M06-2X xc functionals on

the DFA level of theory. An extremely large number of amino acid-cation conformations

have been generated and analyzed by Ropo and colleagues: The rigorous structure search

provided structure/energy data on equal footing over a significant stretch of biochemical

space23 and allowed for interesting analysis, even linking simple structural properties of

the amino acid-cation complexes to acute toxicities.24 Finally, benchmark evaluations and

calibrations of theoretical calculations help in modeling metal-binding sites and studying

metal-ion selectivity in proteins.25–28

The general approach in this work follows a previous study by us on the accuracy of

various energy functions for carbohydrates29 and is briefly outlined in the following. First, a

global search for minima of the potential energy surface (PES) combining both FF and DFA

is performed for either one of the ten systems individually. The obtained global minima and

energy hierarchies are then discussed and compared for systems of equal overall charge q,

i.e. q = 1 for the upper row in Figure 1 and q = 0 for the bottom row in Figure 1. For
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the benchmarking studies, a certain set of structures is then selected based on simple energy

criteria. While the focus does lie on local minima structures, it is intended to select structures

that vary largely in energy and structure in order to intentionally provide “difficulty” for the

theoretical methods to be benchmarked. On top of that, all systems carrying the same overall

charge q, are benchmarked at once (except for FFs), thus providing even more “challenge”

for the methods in question. Finally, across-the-scale total energy calculations for a wide

variety of FFs, semi-empirical methods, DFAs, and wavefunction based methods are tested

and evaluated against high-level coupled cluster calculations using mean absolute errors

(MAEs) and maximum errors (MEs) as a quality measure.

Computational details

Conformational sampling

In order to yield minima structures that serve as a basis for selecting a set of conformers

for the benchmarking process, the conformational space needs to be sampled first. To that

end, an energy minimum search combining both FF and DFA is laid out. First, a global

energy minimum search was performed using a basin-hopping approach within the TINKER

molecular modeling package.30,31 The program works on the level of empirical force fields

and the 2009 AMOEBA biopolymer force field, labeled AMOEBA-BIO09,32,33 was applied

here, which is for two reasons: First, this polarizable force field provides a much “rougher”

potential energy surface than widely used conventional force fields, such as AMBER-99,34

CHARMM22,35 or OPLS-AA,36,37 because it uses atomic charge multipole expansion in-

stead of fixed point charges. The “rougher” the potential energy surface the more minima

are found, hence the conformational space is sampled in more detail. For example, depend-

ing on the actual studied system, i.e. whether the Zn2+ cation is present or the protonation

state of the imidazole side chain and the carboxyl group, the number of minima found can

be up to a factor of six higher when using the AMOEBA-BIO09 force field in comparison
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to the OPLS-AA, AMBER-99, and CHARMM22 force fields. Secondly, the AMOEBA-

BIO09 FF was the only FF available providing out-of-the-box parameters for the neutral

carboxyl group (−COOH). Concerning the technical aspect of the basin-hopping search,

the scan subprogram within TINKER has been applied using all automatically found tor-

sional angles, a relative energy window of 100 kcal/mol and an energy similarity criterion of

0.0001 kcal/mol. After having applied the FF driven basin-hopping approach, all found min-

ima were locally refined, i.e. the individual structures were being geometrically relaxed, us-

ing DFA implemented within the all-electron/full-potential electronic structure code package

FHI-aims.38–40 To be more precise, relaxation was accomplished using a trust radius method

version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm.41 First,

local refinement was done on the PBE+vdW level using FHI-aims specific tier 1 basis sets

and light settings intended to give reliable energies for screening purposes.38 This means

the PBE42 generalized gradient approximation (GGA) exchange-correlation (xc) functional

has been applied along with the Tkatchenko-Scheffler43 van der Waals scheme (vdW) for

treating long-range dispersion effects. To rule out duplicate structures, a clustering scheme

was applied. To be precise, root-mean-square deviations (RMSD) of atomic positions be-

tween any two conformers were calculated using OpenBabel.44 Hierarchical clustering was

then achieved by applying the Unweighted Pair Group Method with Arithmetic Mean (UP-

GMA)45 method implemented in Python’s SciPy46 library. Following that, further relaxation

was accomplished at the PBE+vdW level using tier 2 basis sets and tight settings that are

intended to provide meV-level accurate energy differences,38 i.e. within 0.02 kcal/mol. After

clustering, further relaxation was accomplished at the PBE0+MBD level using the same

two-step approach as before, i.e. using first tier 1 basis sets and light settings, and tier

2 basis sets and tight settings afterwards. As the labeling suggests, the PBE047 hybrid xc

functional has been applied, augmented by a many-body dispersion (MBD)48 correction for

long-range dispersion treatment.
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Levels of theory and energy calculation methods

Wavefunction-based methods

The benchmark calculations in this paper are based on high-level coupled-cluster calcula-

tions.49,50 In particular, the coupled-cluster method including single, double, and perturba-

tive triple excitations, named CCSD(T),10 is commonly referred to as the “gold standard

of quantum chemistry” due to its high accuracy in the complete basis set limit (CBS).51

However, due to the slow convergence of the electronic correlation energy with basis set

size N as well as the technique’s O(N7)-scaling of the computational costs, accurate results

that require large enough basis sets are currently not affordable for system sizes treated

in this work. Instead, the domain-based local pair natural orbital (DLPNO-)CCSD(T)52,53

technique serves as the reference method in this work. The DLPNO-CCSD(T) approxima-

tion aims to fully exploit locality of the electron correlation and shows a near linear scaling

behavior with basis set size N . Calculations have been carried out with the electronic struc-

ture program package ORCA.54 Ahlrichs’ def255 basis set family has been used throughout

for all wavefunction-based methods. Because heavy elements like Zn2+ require a relativistic

treatment of all-electron calculations, the 0th order regular approximation (ZORA),56 im-

plemented in ORCA in an approximate way,57 is used throughout. As the scalar relativistic

treatment requires flexible basis sets, this in turn means that ORCA automatically provides

relativistically recontracted versions58 of Ahlrichs’ def2 basis set family, labeled ZORA-def2.

The accuracy of the DLPNO-CCSD(T) method has been tested previously with a series of

benchmark sets covering a broad range of quantum chemical applications.59 An accuracy of

1 kcal/mol commonly named chemical accuracy, could be obtained using normal settings.

Still, before using the DLPNO-CCSD(T) method with normal settings as the reference

method in this work, validation has to be done against conventional CCSD(T) calculations

for the systems depicted in Figure 1 and using Ahlrichs’ relativistically recontracted split

valence basis set with added polarization functions, labeled ZORA-def2-SVP.
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The other post-Hartree-Fock ab initio method in this work to be benchmarked against

DLPNO-CCSD(T), is the widely used second-order Møller-Plesset perturbation theory (MP2).8,9

Calculations have been carried out again with ORCA and applying a resolution of identity (RI)

approximation.60

Energy calculations for both DLPNO-CCSD(T) and MP2 have been performed using

Ahlrichs’s ZORA-def2-SVP basis set as well as relativistically recontracted valence triple-zeta

and quadruple-zeta basis sets with two sets of polarization functions added, labeled ZORA-

def2-TZVPP and ZORA-def2-QZVPP, respectively. Extrapolation to the CBS limit has

been applied on calculated Hartree-Fock (HF) energies and correlation energies individually.

To be more precise, HF energies have been extrapolated using a form proposed by Karton

and Martin:61

En
HF = ECBS

HF + Ae−α
√
n, (1)

with A, α, and the CBS-extrapolated energy ECBS
HF being parameters to be determined from

a least-squares fitting algorithm that has been applied individually for each conformer, and

n denoting the cardinal number of the respective basis set, i.e. n = 2 for ZORA-def2-SVP,

n = 3 for ZORA-def2-TZVPP, and n = 4 for ZORA-def2-QZVPP. A similar extrapolation

scheme has also been laid out for the correlation energies, this time following the form

proposed by Truhlar:62

En
corr = ECBS

corr +Bn−β, (2)

again with B, β, and the CBS-extrapolated energy ECBS
corr being parameters to be determined

from a least-squares fitting algorithm as before. Extrapolation using all three basis set

families (i.e. n = 2, 3, 4) has been found to yield inconsistent results between the different

systems depicted in Figure 1. Hence, extrapolation was laid out using only ZORA-def2-

TZVPP and ZORA-def2-QZVPP, i.e. an effective two-point extrapolation scheme assuming

β = 3, as originally proposed by Halkier et al.63

Finally, for systems microsolvated with a Zn2+ cation, the slow-converging correlation
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contribution of the zinc electrons may lead to large and conformation dependent basis set

superposition errors (BSSE).18,19 To account for that and prior to performing CBS extrapola-

tion as described above, we subject the HF and correlation energies of each Zn2+ coordinated

conformation to a counterpoise correction as proposed by Boys and Bernardi:64 Assuming

rigid conformers, the BSSE is estimated as

EBSSE =EBSSE(AcH) + EBSSE(Zn2+) , with

EBSSE(AcH) = EAcH+Zn2+(AcH)− EAcH(AcH) , and

EBSSE(Zn2+) = EAcH+Zn2+(Zn2+)− EZn2+(Zn2+),

(3)

where EAcH+Zn2+(AcH) represents the energy of AcH evaluated in the union of the basis sets

on AcH and Zn2+, EAcH(AcH) represents the energy of AcH evaluated in the basis set of

AcH, etc. The individual BSSE errors were then subtracted from the HF and correlation

energy, respectively.

Empirical force fields

Single-point energy calculations using several out-of-the-box force fields (FFs) were carried

out using the TINKER31 molecular modeling package. Two classes of FFs were tackled: (i)

conventional FFs, in particular AMBER-99,34 CHARMM22,35 and OPLS-AA,36,37 as well

as (ii) polarizable atomic multipole-based FFs that use atomic charge multipole expansion

instead of fixed point charges. In particular, these are the 2009 AMOEBA biopolymer

FF named AMOEBA-BIO09,32,33 and the 2013 AMOEBA protein FF named AMOEBA-

PRO13.65 Note that only for systems containing a deprotonated carboxyl group (−COO– ),

parameters were available for all force fields out-of-the-box. As AMOEBA-BIO09 was the

only FF available providing also parameters for the neutral carboxyl group (−COOH), FF

calculations for systems containing neutral AcH (lower row in Figure 1) were only laid out

using this particular FF.
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Semi-empirical quantum chemistry methods

Semi-empirical quantum chemistry methods are based on the Hartree-Fock method, but

follow a simplification strategy by making approximations for computationally demanding

terms. In order to account for caused errors, empirical parameters are incorporated into

the formalism and fitted against experimental data or high-level calculations.66 All semi-

empirical methods tackled in this work are based on the neglect of diatomic differential

overlap (NDDO),67 a method for approximating computational costly three-center and four-

center two-electron integrals. In particular, the different applied models are the Austin Model

1 (AM1),68 the Parametric Method 3 (PM3),69 the Parametric Method 6 (PM6),70 and the

Parametric Method 7 (PM7).71 All semi-empirical method calculations have been carried

out using the MOPAC201672 semi-empirical quantum chemistry program. For the specific

case of PM6, two additional long-range dispersion correction schemes were tackled as well.

In particular, these are Grimme’s D3 correction for dispersion73 plus a simple function for

hydrogen bonds, as well as the corrections to hydrogen bonding and dispersion by Řezáč

and Hobza,74,75 labeled D3H4. The corresponding conjunctive methods are then accordingly

being labeled PM6-D3 and PM6-D3H4.

While single-point energy calculations carried out for all other methods in this work

refer to total energies on the potential-energy surface, semi-empirical methods yield heats

of formation. The heat of formation is defined as the sum of the electronic energy, the

nuclear-nuclear repulsion energy, the ionization energy for the valence electrons, the total

heat of atomization of all the atoms in the system, and – if available – the energy from

hydrogen bonds and dispersion correction.76 When comparing potential energies of other

computational methods with heats of formation obtained from semi-empirical calculations

through the means of MAEs and MEs, the systematic shift between the two is accounted

for, as explained below.
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Density-functional approximations

While density-functional theory (DFT)77,78 in itself is an exact method, in practice approxi-

mations have to be made because the exact form of the exchange-correlation (xc) functional

is unknown, except for the free electron gas. A large variety of different DFAs exist, com-

monly classified into different types depending on the features and formal properties of the

xc functionals in question.79 The ones selected in this work are summarized in the following:

• Generalized gradient approximations (GGAs) are characterized by the dependence of

the xc functional only on the electron density and its gradient. In this work, we

studied the accuracy of the Perdew-Burke-Ernzerhof (PBE)42 and Becke-Lee-Yang-

Parr (BLYP)15,16 xc functionals.

• In addition to GGAs, meta-GGAs also depend on the Laplacian of the electron density

or include the kinetic energy density. We tested the M06-L7 and M11-L80 xc functionals

from the group of Minnesota functionals, as well as the SCAN81 functional.

• For the computationally more costly class of hybrid functionals, the exchange parts

of the functional are admixed with exact exchange from Hartree-Fock theory. We

tested the PBE0,47 B3LYP11,12 and SCAN082 functionals. In addition, several hybrid

functionals from the group of Minnesota functionals were tested as well, in particular

the M06,83 M06-2X,83 M08-SO,84 M08-HX,84 and M1185 functionals.

Calculations for the PBE, BLYP, M11-L, SCAN, PBE0, B3LYP, M08-SO, M08-HX, and M11

xc functionals were carried out with FHI-aims using tier 2 basis sets and really_tight set-

tings, and including a relativistic treatment by applying the atomic ZORA method.38 The

SCAN and SCAN0 functionals are implemented in FHI-aims via the dfauto program.86

Calculations for the M06-L, M06, and M06-2X xc functionals were carried out with ORCA,

including ZORA and the relativistically recontracted ZORA-def2-QZVPP basis set, as ex-

plained above.
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Commonly applied semi-local DFAs and conventional hybrid functionals are unable to

capture the essence of long-range dispersion effects.87 Many systems containing biomolecules

rely on van der Waals interaction treatments for an accurate energetic description.23,24,88,89

To that end, computationally cheap correction schemes exist that are evaluated a posteriori,

i.e. they are accounted for after the electron density has been obtained via the self-consistent

treatment in DFT. Three different vdW correction schemes were tackled in this work:

• The general empirical pairwise additive D3 dispersion correction method by Grimme et

al.73 provides a consistent description across the whole periodic table. Here we used the

zero-damping function for short ranges, including three-body dispersion contributions.

In order to match the long- and midrange correlation of D3 with the semilocal corre-

lation computed by the xc functional, the parameterization of the damping function

depends on the xc functional itself. Hence, only xc functionals where an out-of-the-

box D3 treatment was available, were tested. In particular, we evaluated M06-L+D3,

M06+D3, and M06-2X+D3 using ORCA, using the same settings as described above.

For the methods of PBE+D3, BLYP+D3, PBE0+D3, and B3LYP+D3, long-range

dispersion calculations were done on top of the FHI-aims calculated energies using

Grimme’s stand-alone program DFT-D3.90

• The parameter-free pairwise Tkatchenko-Scheffler van der Waals scheme (vdW)43 relies

on summing interatomic pairwise, electron-density derived C6 coefficients, and accu-

rate reference data for the free atoms. As the method is implemented in FHI-aims,

calculations are carried out for the methods of PBE+vdW, BLYP+vdW, PBE0+vdW,

and B3LYP+vdW.

• In contrast to the previous pairwise Tkatchenko-Scheffler scheme that ignores the in-

trinsic many-body nature of correlation effects, the many-body dispersion scheme la-

beled MBD48 (and sometimes also labeled MBD* or MBD@rsSCS) combines the TS

scheme with the self-consistent screening (SCS) equation of classical electrodynamics.
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In addition, a range-separation (rs) technique is applied, separating correlation into

a short-range and a long-range contribution. Calculations were carried out for the

methods of PBE+MBD and PBE0+MBD using FHI-aims.

In order to avoid high computational costs of hybrid xc functionals and still yield accurate

results, recent focus has been set on “low-cost” DFT based composite electronic structure ap-

proaches. In particular, the PBEh-3c method by Grimme et al.91 aims to efficiently compute

structures and interaction energies. It is based on a modified hybrid variant of the PBE GGA

xc functional with a relatively large amount of non-local Hartree-Fock-exchange (42%). The

orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital Gaussian basis

sets. Furthermore, the D3 scheme and the global counterpoise-correction scheme (gCP)92

are applied in order to account for long-range dispersion and BSSE effects, respectively.

Calculations were carried out with ORCA.

Finally, double hybrid xc functionals extend hybrid xc functionals in a way that both

the exchange and the correlation part contain non-local orbital-dependent components. In

particular, we test the B3LYP+XYG393 method implemented in FHI-aims. As the name

implies, the exchange parts of the functional are admixed with exact exchange from Hartree-

Fock theory, while a fraction of the correlation part is calculated using Görling-Levy coupling-

constant perturbation expansion to the second order (PT2).94 Calculations were carried out

with FHI-aims using numerically tabulated atom-centered orbital triple-zeta basis sets with

valence-correlation consistency, labeled NAO-VCC-nZ.95 Constructed analogous to Dun-

ning’s correlation-consistent polarized valence-only basis sets (cc-pVnZ),96 these basis sets

utilize the more flexible shape of NAOs. Zhang et al. showed that XYG3 provides best

results in combination with the triple-zeta NAO-VCC-3Z basis set.97 Because the NAO-

VCC-3Z basis set was not available out-of-the-box for the element of Zn, we used Dunning’s

analogous cc-pV3Z98 basis set instead for this particular element.
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Mean absolute error and maximum error

In order to compare the energetic performance of different methods, single-point energy

calculations of a set of different conformers were compared by means of mean absolute

errors (MAEs) and maximum errors (MEs). MAEs of relative energies between the reference

method and the method to be benchmarked were calculated as follows:

MAE =
1

N

N∑
i=1

|∆Ereference
i −∆Ebenchmarked

i + c|, (4)

where the index i runs over all N conformations of a given data set. ∆Ei in principle

denotes the energy difference between conformer i and the lowest-energy conformer of the

set. The adjustable parameter c is used to systematically shift the reference and benchmark

conformational hierarchies versus one another to obtain the lowest possible MAE, rendering

the reported MAE value independent of the choice of any reference structure. Similarly, MEs

were calculated as follows:

ME = max
i∈N
|∆Ereference

i −∆Ebenchmarked
i + c|, (5)

using the same notation as above. Figure 2 shows an example of a correlation plot including

a graphical illustration of |∆Ereference
i −∆Ebenchmarked

i |.

Results

Energy hierarchies

Figure 3 shows the obtained energy hierarchies at the PBE0+MBD level after having com-

pleted the conformational search for each individual protonation state of bare negatively

charged AcH and bare neutral AcH, as well as both systems in presence of a Zn2+ cation.

Comparing the two protonation states for negatively charged AcH, i.e. AcH(Nδ1)−COO–
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Figure 2: Example of a correlation plot of two different sets of conformers (red and blue).
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and AcH(Nε2)−COO– (see Figure 3(a)), it is immediately evident that the protonation of

the nitrogen atoms of the imidazole ring has a large impact concerning energy and structure

of the system. The lowest-energy conformer for AcH(Nδ1)−COO– lies 14.3 kcal/mol lower in

energy than the lowest-energy conformer for AcH(Nε2)−COO– , meaning that the tautomeric

state of having the Nδ1 nitrogen atom of the imodazole ring protonated is energetically

much more favorable that having the Nε2 nitrogen atom protonated. The reason for that

comes abundantly clear when comparing the two lowest-energy conformers: In the case

of AcH(Nδ1)−COO– , there exists the geometrical possibility of forming a hydrogen bond

between one oxygen of the carboxylate anion at the C-terminus and the nitrogen-bound

hydrogen. In case of having the Nε2 nitrogen atom protonated, a hydrogen bond cannot be

formed as the proton “points away” from the carboxylate anion, explaining the much higher

energy of this structure in comparison with its tautomeric counterpart.

The situation however changes drastically when introducing a Zn2+ cation to the system.

As seen in Figure 3(a), the lowest-energy conformer of AcH(Nδ1)−COO– + Zn2+ is now

18.2 kcal/mol higher in energy than the lowest-energy conformer of AcH(Nε2)−COO– +Zn2+.

The structures look fairly similar in part as the oxygen atom of the carbonyl group at the

acetylated N-terminus as well as one oxygen of the carboxylate anion are coordinated towards

the Zn2+. They differ however in the different orientation of the imidazole ring towards the

cation. In the case of AcH(Nε2)−COO– + Zn2+, the deprotonated Nδ1 atom allows for

a coordinate bonding interaction with the Zn2+ cation, resulting in an energetically more

favorable structure compared to AcH(Nδ1)−COO– +Zn2+ where the deprotonated Nε2 atom

points away from the cation, resulting in an energetically less favorable cation-π interaction

between imidazole ring and cation. Adding a Zn2+ cation to the system also results in an

increased energetic gap between conformers. For example, the two lowest-energy conformers

of AcH(Nδ1)−COO– are separated by 1.6 kcal/mol while the gap increases to 3.8 kcal/mol

for AcH(Nδ1)−COO– + Zn2+. For AcH(Nε2)−COO– , the two lowest-energy conformers are

separated by 1.0 kcal/mol, while the gap increases to 18.9 kcal/mol for AcH(Nδ1)−COO– +
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Zn2+.

The hierarchies of the three different protonation states of bare neutral AcH are shown

in Figure 3(b). The global-minimum conformers of the systems of AcH(Nδ1)−COOH and

AcH(Nε2)−COOH are very similar in energy, differing only by 0.04 kcal/mol. For AcH(Nε2)−COOH,

a hydrogen bond is possible between the deprotonated Nδ1 atom and said proton, resulting

in a very similar structure compared to system AcH(Nδ1)−COO– . For AcH(Nδ1)−COOH,

due to the protonated Nδ1 atom, the proton at the carboxyl group points away from the

imidazole ring and is coordinated towards the N-terminus, forming a hydrogen bond with

the carbonyl group. A protonated imidazole ring, as seen in the protonation state of system

AcH+−COO– , results in an energetically unfavorable structure, being 23.2 kcal/mol higher

in energy than the global minimum of system AcH(Nε2)−COOH.

The situation changes again when introducing a Zn2+ cation to the system, see Fig-

ure 3(b). The system of AcH(Nε2)−COOH+Zn2+ is energetically most favorable as the struc-

ture of the global minimum is very similar to the one of the system of AcH(Nε2)−COO– +

Zn2+: The deprotonated Nδ1 atom allows for a coordinate bonding interaction with the

Zn2+ cation that in turn is also coordinated towards the electronegative oxygen atoms at

the carboxyl group at the C-terminus and the carbonyl group at the N-terminus. The global

minimum of AcH+−COO– +Zn2+ is 16.9 kcal/mol higher in energy than the global minimum

of AcH(Nε2)−COOH + Zn2+. The positively charged cation and the protonated imidazole

ring share no proximity, resulting in a lowest-energy structure where the Zn2– is coordinated

between the oxygen of the carbonyl group at the N-terminus and one oxygen of the carboxyl

group at the C-terminus. The structure of the global minimum for AcH(Nδ1)−COO– +Zn2+

is very similar to the one for AcH(Nε2)−COO– + Zn2+, safe the twisted imidazole ring

due to the protonated Nδ1 atom. Similarly to system AcH(Nδ1)−COO– + Zn2+, this re-

sults in an energetically less favorable cation-π interaction between imidazole ring and

cation as the global minimum is 29.5 kcal/mol higher in energy than the global minimum of

AcH(Nε2)−COO– + Zn2+.
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Selection of minima structures

For every protonation state, we selected the lowest-energy structures from the previous global

minimum search based on energy criteria. For one, this ensures an emphasis on the most

likely structures also seen in experiment as there will always be a bias towards structures

with low energy, ignoring individual set-ups or experimental conditions. However, benchmark

calculations were done including all possible protonation states for a given overall system

charge, except for the case of FFs as explained above. The large energetic differences between

global minima (and consequently other low-energy conformers) of individual protonation

states, as seen in Figure 3, therefore provides a challenging benchmark testing situation for

the different methods. Table 1 summarizes the different energy selection criteria across the

systems and protonation states tackled in this work.

Table 1: Minima selection criteria

System Net charge Energy cut-off # Minima
AcH(Nδ1)−COO–

−1 23.0 kcal/mol
17*

AcH(Nε2)−COO– 10*
AcH(Nδ1)−COO– + Zn2+

+1 41.5 kcal/mol
9

AcH(Nε2)−COO– + Zn2+ 9

AcH(Nδ1)−COOH
0

7.0 kcal/mol
11

AcH(Nε2)−COOH 18
AcH+−COO– 50.0 kcal/mol 8*
AcH(Nδ1)−COOH + Zn2+

+2 46.0 kcal/mol
9

AcH(Nε2)−COOH + Zn2+ 18
AcH+−COO– + Zn2+ 22
The “energy cut-off” refers to the energy relative to the respective global minimum for a
given total system charge (i.e. taking into account all possible protonation states, compare
Figure 3), within which all found minima are taken into account. The last column denotes
the number of minima used for benchmarking. Numbers denoted with an asterisk (*) mean
all found minima for this particular protonation state are considered.

Validation of DLPNO-CCSD(T) as the reference method

As described above and in order to validate DLPNO-CCSD(T) as the reference method used

in this work, we checked the consistency of the method against conventional CCSD(T), com-
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Figure 4: Correlation plots for benchmarking DLPNO-CCSD(T) against conventional
CCSD(T) using the ZORA-def2-SVP basis set. The systems tackled refer to (a) nega-
tively charged AcH, (b) the same protonation states in presence of a Zn2+ cation, (c) bare
neutral AcH, and (d) the same protonation states in presence of a Zn2+ cation. The gray
shading denotes an absolute energy deviation of 1 kcal/mol, i.e. the region of “chemical accu-
racy”. (e) Obtained MAEs (dark-gray) and MEs (light-gray) for the four systems, following
Equations (4) and (5), respectively.
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monly referred to as the “golden standard of quantum chemistry”. Calculations were laid out

using Ahlrichs’ relativistically recontracted ZORA-def2-SVP basis set for which CCSD(T)

calculations are still affordable with respect to computational costs. Consequently, no ex-

trapolation or counterpoise correction had been applied here, as the intent is to compare the

“pure” total energetic performances of both methods, which – if similar – will justify applying

DLPNO-CCSD(T) “instead of” conventional CCSD(T) using larger basis sets to benchmark

the other computational methods. Figures 4(a)-(d) show the corresponding correlation plots

for all systems tackled in this work. The alignment of the points near the dashed diagonal

line indicates a very similar energy description between the two methods across all systems

and protonation states. To quantify that, MAEs and MEs have been computed according to

Equations (4) and (5), respectively. For the four different systems, MAEs and MEs are given

in Figure 4(e). In all cases, MAEs are well within “chemical accuracy”, i.e. smaller than

0.5 kcal/mol. Furthermore, MEs are also smaller than 1 kcal/mol for all systems. Taking

into consideration that different protonation states and minima that differ in energy by up

to more than 50 kcal/mol have been used, we conclude that DLPNO-CCSD(T) serves as a

valid reference method for the benchmarking process of other computational methods.

In order to finally yield accurate total energies serving as benchmarks, counterpoise cor-

rection has been applied following Equation (3) and extrapolation to the complete basis set

limit has been done following Equations (1) and (2) using Ahlrichs’ relativistically recon-

tracted ZORA-def2-SVP, ZORA-def2-TZVPP, and ZORA-def2-QZVPP basis sets.

Benchmarking force fields and semi-empirical methods

Figure 5 shows obtained MAEs and MEs calculated according to Equations (4) and (5) for

all systems tackled in this work. As explained above, FF performance evaluation has been

treated individually for different protonation states.

Considering bare neutral AcH, see Figure 5(a), conventional FFs that make use of fixed

point charges are comparable in performance: For AcH(Nδ1)−COO– , MAEs for AMBER-
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Figure 5: MAEs (dark-gray) and MEs (light-gray) following Equations (4) and (5) for
different force fields and semi-empirical methods with respect to DLPNO-CCSD(T), for
which counterpoise correction has been done following Equation (3) and extrapolation to
the complete basis set limit has been done following Equations (1) and (2). The tackled
systems are (a) negatively charged AcH with and without a Zn2+ cation, and (b) neutral
AcH with and without a Zn2+. For force fields, the different protonation states have to be
treated separately.
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99, CHARMM22, and OPLS-AA have been found to be 2.1 kcal/mol, 2.2 kcal/mol, and

2.4 kcal/mol, respectively. Considering the fact that FF parameters have been derived from

systems in solvation instead of gas-phase calculations applied here, the result can be con-

sidered satisfactory. However, large MEs with up to 6.9 kcal/mol for OPLS-AA, indicate a

possible large deviation in the energetic description for individual conformers. Somehow sur-

prisingly, polarizable atomic multipole-based FFs AMOEBA-BIO09 and AMOEBA-PRO13

perform worse than their FF counterparts using fixed point charges. Large MEs up to

10.9 kcal/mol and 17.3 kcal/mol for AMOEBA-BIO09 and AMOEBA-PRO13, respectively,

indicate severe discrepancies in the energetic description for individual conformers. Con-

sequently, the corresponding MAEs of 3.6 kcal/mol and 5.3 kcal/mol are larger than for

conventional FFs.

Qualitative similar results are found for AcH(Nε2)−COO– . Best performance for FFs is

found using CHARMM22 with a MAE of 1.5 kcal/mol and a ME of 3.3 kcal/mol.

Semi-empirical methods show a comparable performance to FFs, but are able to describe

both protonation states simultaneously, per definition. Best performance is found for PM7

with a MAE of 1.7 kcal/mol and a ME of 5.5 kcal/mol. For PM6, adding a long-range

dispersion treatment method, i.e. D3 or D3H4, yields very similar results of approximately

1.9 kcal/mol, as is expected for a system of such small size.

Solvating the system with a single Zn2+ cation results in very poor performances for both

FFs and semi-empirical methods. Out of the conventional FFs, OPLS-AA shows the best

performance with a still very large MAE of 23.8 kcal/mol for AcH(Nδ1)−COO– + Zn2+ and

8.7 kcal/mol for AcH(Nε2)−COO– + Zn2+. Polarizable atomic multipole-based FFs perform

slightly better with a MAE of 11.7 kcal/mol using AMOEBA-BIO09 for AcH(Nδ1)−COO– +

Zn2+ and a MAE of 6.2 kcal/mol using AMOEBA-PRO13 for AcH(Nε2)−COO– + Zn2+.

Semi-empirical methods show a further improvement, with PM7 yielding a MAE of 5.6 kcal/mol

and a ME of 13.1 kcal/mol.

As AMOEBA-BIO09 was the only FF available providing parameters out-of-the-box for
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the neutral carboxyl group (−COOH), FF calculations for systems containing neutral AcH

were only laid out using this particular FF, see Figure 5(b). Protonation states with a

neutral imidazole ring yield a MAE of 4.0 kcal/mol for AcH(Nδ1)−COOH and 2.9 kcal/mol

for AcH(Nε2)−COOH. For AcH+−COO– , performance is again very poor yielding a MAE

of 7.8 kcal/mol and a ME of 18.4 kcal/mol. When adding a Zn2+ cation to the system, the

MAE for AMOEBA-BIO09 is larger than 6 kcal/mol for all three protonation states. Out of

the semi-empirical methods, PM6 performs best with a MAE of 6.6 kcal/mol.

Benchmarking standard DFAs and methods beyond

Similarly to the previous section, the benchmarking process has been repeated for different

kinds of DFAs as well as the wavefunction-based MP2 method. Figure 6 shows obtained

MAEs and MEs calculated according to Equations (4) and (5) for all systems tackled in

this work. Considering bare neutral AcH, see Figure 6(a), it is interesting to note that all

tested methods already provide a very good accuracy as the MAE is less than 1 kcal/mol in

all cases. Out of the applied GGA xc functionals, BLYP+D3 shows best performance with

a MAE of 0.4 kcal/mol and a ME of 1.1 kcal/mol. It is interesting to see that the applied

long-range dispersion schemes all show significant improvement over the methods without

such treatment already for systems of such a small size, compare e.g. the ME of 3.1 kcal/mol

for BLYP with the obtained ME of 1.1 kcal/mol for BLYP+D3. All three different van der

Waals treatment methods show a similar performance as the respective obtained MAEs differ

by less than 0.1 kcal/mol. Out of the meta-GGA xc functionals, SCAN performs best with

a MAE of 0.3 kcal/mol and a ME of 1.0 kcal/mol. Performance of the composite method

PBEh-3c is comparable to the bare hybrid xc functional PBE0 with a MAE of 0.8 kcal/mol

and a ME of 2.2 kcal/mol. Again, long-range dispersion treatments applied a posteriori to

the hybrid xc functional calculations improve the performance significantly, compare e.g.

the ME of 2.7 kcal/mol for B3LYP with the obtained ME of 0.8 kcal/mol for B3LYP+D3.

The double hybrid xc functional B3LYP+XYG3 and the wavefunction-based MP2 method
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perform equally well with a ME of 0.8 kcal/mol and 0.9 kcal/mol, respectively.
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Figure 6: MAEs (dark-gray) and MEs (light-gray) following Equations (4) and (5) for dif-
ferent standard DFAs, the composite method PBEh-3c, double hybrid DFA B3LYP+XYG3,
and the wavefunction-based MP2 method with respect to DLPNO-CCSD(T), for which coun-
terpoise correction has been done following Equation (3) and extrapolation to the complete
basis set limit has been done following Equations (1) and (2). The tackled systems are
(a) negatively charged AcH with and without a Zn2+ cation, and (b) neutral AcH with and
without a Zn2+.

When adding a Zn2+ cation to the system, GGA xc functionals are no longer able to

describe the energies within “chemical accuracy”. Best performance is found for PBE+MBD

with a MAE of 1.6 kcal/mol and a ME of 4.6 kcal/mol. Meta-GGA xc functionals already

yield a big improvement as the M11-L xc functional yields a MAE of 0.9 kcal/mol. The

composite method PBEh-3c is not sufficient to describe energies of such systems accurately

enough as the MAE is found to be 2.0 kcal/mol and a rather large ME of 6.2 kcal/mol is

obtained. Hybrid xc functionals provide a generally more accurate energetic description as
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PBE0+D3, PBE0+MBD, M06-2X, M06-2X+D3, M08-SO, M11 , and SCAN0 yield MAEs

within 1.0 kcal/mol. MP2 yields a MAE of 0.7 kcal/mol. Out of all methods, the double

hybrid xc functional B3LYP+XYG3 performs best with a MAE of 0.5 kcal/mol and a ME

of 1.6 kcal/mol.

For neutral bare AcH, see Figure 6(b), the benchmarking process is much more challenging

as three different protonation states are considered, as well as minima that differ in energy by

up to more than 50 kcal/mol. Hence, GGA xc functionals are not able to yield MAEs within

“chemical accuracy”. Best performance is seen for BLYP with a MAE of 1.2 kcal/mol and a

ME of 5.2 kcal/mol. Meta-GGA xc functionals already show a big improvement with M11-L

giving the best performance with a MAE of 0.6 kcal/mol. The composite method PBEh-3c

also yields a small MAE of 0.8 kcal/mol while the corresponding ME of 3.7 kcal/mol indicates

that larger energetic deviations are possible for individual conformers. Hybrid xc functionals

again perform very well as all MAEs are within 1.0 kcal/mol. Best performance is found for

M06-2X with a MAE of 0.3 kcal/mol and a ME of 1.1 kcal/mol. Out of all methods, best

performance is again found for B3LYP+XYG3 with a MAE of 0.2 kcal/mol and a ME of

0.8 kcal/mol.

When adding a Zn2+ cation to the system, performance of the methods is comparable

to AcH+−COO– + Zn2+. GGA xc functionals all yield a MAE above 1 kcal/mol. In order

to reach “chemical accuracy” one needs to rely on meta-GGA where the SCAN functional

yields a MAE of 0.9 kcal/mol. Out of the hybrid xc functionals, PBE0+D3, PBE0+vdW,

PBE+MBD, M06, M06+D3, M06-2X, M06-2X+D3, M06-SO, and SCAN0 yield MAEs

within 1.0 kcal/mol. Out of all methods, best performance is again found for B3LYP+XYG3

with a MAE of 0.7 kcal/mol and a ME of 1.8 kcal/mol.

Considering calculation times

For applications, one not only needs to consider the accuracy of a particular method, but

also the required computational costs and times. All FF and semi-empirical calculations
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in this work have been laid out on a single CPU core and took between 0.1 s and 0.3 s per

single-point energy evaluation. Timings of these methods are all similar due to the small size

of the benchmark systems. Because of the fast timings of energy evaluations, conventional

FFs are applied if an excessive amount of single-point energy evaluations is required, e.g. for

molecular dynamics simulations or conformational searches.99 However, as seen in this work

where this energy description model was found only acceptable for bare neutral AcH, one

should generally cross-check with other more accurate methods.

Concerning DFT calculations, timings depend on the applied xc functional, used basis

set, the system, and the implementation of the method itself. On a machine with 32 CPU

cores and for the system of AcH(Nδ1)−COOH + Zn2+, it took 43 s on average for a single-

point energy calculation with FHI-aims applying the GGA xc functionals PBE and BLYP,

using tier 2 basis sets and really_tight settings. Using the SCAN xc functional and

the M11-L meta-GGA xc functional with the same settings took 69 s and 97 s on average,

respectively. Calculations for the two best performant hybrid xc functionals M08-SO and

SCAN0 took 839 s and 586 s on average using the same settings.

However, for most DFT production purposes one would not rely on computationally

costly, yet very accurate, really_tight settings, as done in this work. For standard cases,

tight settings in combination with tier 2 basis sets already provide meV-level accurate

energy differences,38 i.e. within 0.02 kcal/mol. Indeed, repeating the procedure for the PBE,

BLYP, PBE0, and B3LYP xc functionals but using tight settings yields virtually identical

results. On a machine with 32 CPU cores and for the system of AcH(Nδ1)−COOH + Zn2+,

computational time gets then reduced from 43 s to 27 s on average for a single-point energy

calculation applying the GGA xc functionals PBE. Similarly for the hybrid xc functional

PBE0, average calculation times of 738 s with really_tight settings get reduced to 727 s

with tight settings.

The composite method PBEh-3c that gave MAEs within “chemical accuracy” for the

systems without a Zn2+ cation, took 213 s on average for a single-point energy calculation
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on a single CPU core using ORCA. The most accurate method across all systems and pro-

tonation states, B3LYP+XYG3, took 751 s on average for a single-point energy evaluation

on a machine with 32 CPU cores using FHI-aims. While MAEs for MP2 are compara-

ble with B3LYP+XYG3 and within “chemical accuracy”, energy evaluation times are much

larger due to the large basis sets required for accurate predictions. On a machine with 32

CPU cores, it took 2242 s on average for an MP2 energy calculation using ORCA and the

ZORA-def2-QZVPP basis set.

Conclusions

We examined the goodness of commonly applied levels of theory, i.e. force fields, semi-

empirical methods, density-functional approximations (DFA), and wavefunction-based meth-

ods with respect to high-level coupled-cluster calculations. To that end, benchmark systems

consisting of either a bare acetylhistidine or microsolvated with a Zn2+ cation were (i) con-

formationally sampled by performing a global energy minimum search combining both FF

and DFA, and (ii) obtained conformational minima were used for benchmarking against

DLPNO-CCSD(T) single-point energy-calculations.

For bare negatively charged AcH, the obtained energy hierarchies on the hybrid DFA

level showed that the protonation state of AcH(Nδ1)−COO– is energetically favorable com-

pared to AcH(Nε2)−COO– as the respective global minima differ by 14.3 kcal/mol in en-

ergy. The situation is reversed when adding a Zn2+ cation to the system: the protonation

state of AcH(Nε2)−COO– + Zn2+ is energetically preferred as the respective global min-

ima differ by 18.2 kcal/mol. Considering bare neutral AcH, the two protonation states of

AcH(Nδ1)−COOH and AcH(Nε2)−COOH yield global minima that are similar in energy.

When adding a Zn2+ cation to the system, AcH(Nε2)−COO– +Zn2+ is energetically preferred

to the other two protonation states of AcH+−COO– + Zn2+ and AcH(Nδ1)−COO– + Zn2+,

as the global minima differ by 16.9 kcal/mol and 29.5 kcal/mol in energy, respectively.
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The benchmarking process, based on single-point energy calculations and assessed by

means of MAEs and MEs, revealed that force fields and semi-empirical methods are generally

not reliable enough for an energetic description of these systems within “chemical accuracy” of

1 kcal/mol. While GGA xc functionals like PBE and BLYP, as well as the composite method

PBEh-3c have problems in their energetic description for systems containing a Zn2+ cation,

it is possible to reach “chemical accuracy” for all systems already using the meta-GGA SCAN

xc functional. Hybrid xc functionals perform generally well with MAEs within 1 kcal/mol

for most of them. Out of the hybrid xc functionals, best performance is shown for M06-SO

and SCAN0. Out of all tested methods, the double hybrid xc functional B3LYP+XYG3

resembles the benchmark method DLPNO-CCSD(T) best with a MAE of 0.7 kcal/mol and a

ME of 1.8 kcal/mol. While MP2 performs similarly as B3LYP+XYG3, computational costs,

i.e. timings, are increased by a factor of 4 in comparison due to the large basis sets required

for accurate results.
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