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Molecular docking is a simulation technique that aims to predict the binding pose between a ligand and a
receptor. The resulting multidimensional continuous optimization problem is practically unsolvable in an
exact way. One possible approach is the combination of an optimization algorithm and an objective function
that describes the interaction. The software PARADOCKS is designed to hold different optimization algorithms
and objective functions. At the current stage, an adapted particle-swarm optimizer (PSO) is implemented.
Available objective functions are (i) the empirical objective function p-Score and (ii) an adapted version of
the knowledge-based potential PMF04. We tested the docking accuracy in terms of reproducing known
crystal structures from the PDBbind core set. For 73% of the test instances the native binding mode was
found with an rmsd below 2 Å. The virtual screening efficiency was tested with a subset of 13 targets and
the respective ligands and decoys from the directory of useful decoys (DUD). PARADOCKS with PMF04
shows a superior early enrichment. The here presented approach can be employed for molecular docking
experiments and virtual screenings of large compound libraries in academia as well as in industrial research
and development. The performance in terms of accuracy and enrichment is close to the results of commercial
software solutions.

INTRODUCTION

Molecular interactions define all manifestations of life.
Accordingly, knowledge of such processes is of paramount
importance to current life science research and development
in fields as diverse as medicine, biotechnology, and crop
science. Upcoming challenges like fast-evolving infectious
diseases, personalization of medicine, development of tailor-
made enzymes or substrates, as well as the development of
crop protective agents mark the need for rapid approaches
that feature computational techniques.

Already since the late 1990s, computational approaches
have gained considerable attention in the area of drug
design.1,2 In silico techniques from computational chemistry,
bioinformatics, and systems biology apparently offer the
chance to tackle these problems and to respond faster and
in a more resource-conserving way than classical, pure wet-
lab approaches. Molecular docking plays a key-role among
the variety of approaches and techniques because it offers the
chance to gain knowledge on the actual binding pose, the
situation at atomic level that defines binding and function.

The three-dimensional structure of the complex formed
by protein and ligand is key to the prediction of activities
based on physicochemical models that describe the spatial
and energetical properties of binding. Still, the high dimen-
sionality and the complicated nature of the problem result
in complex energy landscapes with many local minima.
These features prohibit an analytic approach to molecular
docking and thus, search strategies are employed to find the
native pose of ligand and receptor. Most docking approaches
generate a large number of complexes and evaluate their
quality in terms of binding. Molecular docking thus means
the generation and evaluation of molecular complexes to
predict binding poses of protein ligand complexes. A way
to categorize docking approaches follows the treatment of
this high dimensionality:

• The ligand can be subdivided into rigid fragments. These
are subsequently reassembled within the binding pocket.
Such fragment-based techniques are used by FLEXX,3

SURFLEX,4 and eHiTS.5

• The docking of ensembles of rigid ligand conformations
results in high speed, but has its drawback in the fact
that the biologically active conformation of a compound
has to be part of the precalculated conformational
ensemble. Examples are FRED

6 and early versions of
DOCK.7,8

• Heuristics-based techniques aim for the global minimum
of an objective function, assuming this optimum is the
effective complex. The search space of the algorithm is
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defined by the degrees of freedom of ligand and protein.
Population-based metaheuristics, mainly genetic algo-
rithms (GA), are used by programs like GOLD9 and
AUTODOCK.10

Following the line of heuristic-based approaches, alternative
search strategies have been proposed. The recently introduced
docking program PLANTS

11,12 uses ant-colony optimization
(ACO). Based on the AUTODOCK software, a number of
particle-swarm optimization (PSO) approaches were pre-
sented: AUTODOCK with ClustMPSO,13 SODOCK,14 and
PSO@AUTODOCK.15 PSO is inspired by social behavior of
animals, for example, bird flocking or fish schooling and was
first suggested by Eberhart and Kennedy.16 Intuitively, the
PSO appears perfectly suited to tackle the continuous search
space of protein ligand interaction within the molecular
docking problem. This assumption is well supported by the
performance and success of the published docking method-
ologies employing PSO variants. Of special interest is the
easy adaptability of PSO, and other population-based me-
taheuristics, for parallel approaches, especially with the
current rise of multicore CPU architectures.

The interaction between ligand and protein is described
by a mathematical model, the objective or energy function.
Important terms are the solvation energies of the protein,
the ligand, and their complex ∆Gsol

prot, ∆Gsol
lig, and ∆Gsol

complex,
the change in entropy ∆S between bound and unbound
state, the interaction energy ∆Gint, and the energy change
in ligand and protein while the interaction is formed ∆λ.
All these terms contribute to the binding free energy
according to eq 117

Practical considerations prohibit the correct estimation of
∆Gbind: (i) the large numbers of the individual contributions
have to be balanced to avoid errors in the small values of
the binding energy, especially with some contributions being
only roughly estimated like entropy, and (ii) exact calculation
demands a complete sampling of the conformational space
for the ligand in the binding pocket, a very time-consuming
task that is not feasible for high-throughput molecular
docking of compound libraries.17,18 Thus, a variety of
approaches has been introduced that try to correctly rank of
protein ligand poses toward the global optimum, the native
state. In a test case, this means the reproduction of the X-ray
structure. The available approaches can be categorized as
follows:

• Force field-derived objective functions are based on the
description of nonbonded interactions of established
force fields. The terms used are based on physical laws
and are accurate representations of the enthalpic con-
tributions. DOCK

7,8 describes the nonbonded interactions
partially with terms from the AMBER

19 force field. Within
GOLD, the contributions of van der Waals-type interac-
tions (vdW) are estimated by soft 8-4-Lennard-Jones
potentials.9

• Empirically derived objective functions consist of a
number of physics-inspired terms that describe, for
example, hydrogen-bonds, ionic interactions, hydropho-
bic effects, entropy, π-stacking, or π-cation-interactions.
These functions are trained to reproduce representative

test sets. An advantage of empirical objective functions
is their usually fast computational evaluation. GoldScore
is in parts an empirically derived scoring function,9

further examples are SCORE120 and X-SCORE.21

• Knowledge-based potentials stem from statistical evalu-
ations of large data sets, for example, Protein Database.
In contrast to the above-mentioned approaches, there is
no limitation to the specifically described interactions
because knowledge-based approaches try not to model
individual interaction types. Rather, potentials intrinsi-
cally include all effects that can be extracted from
experimentally derived structures. Well-accepted ex-
amples are BLEEP,22,23 PMF24 and PMF04,25 and
DRUGSCORE.26

Obviously, there is a multitude of energy functions and
optimization algorithms available and many new develop-
ments can be expected in the future. To us, this clearly
renders the need for a platform that allows the convenient
incorporation of existing and new approaches either to
describe ligand-receptor interaction or to search for the
native pose. Even though a wide variety of programs to solve
the molecular docking problem exists, there are disadvan-
tages:

• Closed source distributions cover the approaches used
for computations for the interaction, as well as for
sampling and for energy estimation. This makes results
and approaches not comparable and limits progress.

• Restricted licensing policies hinder the redistribution of
self-developed code.

• Monolithic code and outdated programing standards
limit the extension and further development of several
existing approaches.

Our newly developed docking software has the chance to
avoid these issues and to satisfy the needs of users and
developers from industry and academia. The development
of the Parallel Docking Suite (PARADOCKS) software follows
these rules:

• PARADOCKS will be distributed as open source code
under a nonrestrictive license (GPL).

• Design and implementation should result in an as far as
possible platform and operating system independent
software.

• If actively maintained programs or libraries are available
for certain problems, they will be used.

• Parallel computer systems, compute clusters, and mul-
ticore workstations become more and more widespread,
thus parallel data processing is a major goal of PARA-
DOCKS.

• The program should be usable with automated pipelines
for virtual screening and drug design.

Within this article we will describe the PARADOCKS frame-
work for molecular docking. The Materials and Methods
section will introduce basic design principles and their
implementation and will cover specifics regarding the
implementation of optimization algorithms and objective
functions. The latter two will be illustrated by example
implementations of a PSO, as well as the p-Score and
PMF0425 objective function. The Results section deals with
the assessment of the docking accuracy as well as testing
the applicability for virtual screening of PARADOCKS.

∆Gbind ) ∆Gsol
complex - ∆Gsol

prot - ∆Gsol
lig + ∆Gint - T∆S + ∆λ

(1)
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MATERIALS AND METHODS

Problem Description. We approximate the ligand as a
flexible molecule and the receptor as rigid. The interaction
between ligand and receptor is described by an objective
function that depends on three types of degrees of freedom:
(i) The position of the ligand molecule is described by three
values x, y, z in Cartesian coordinate space. (ii) The rotational
degrees of freedom are modeled as a quaternion H ) x1 +
x2i + x3j + x4k. This representation overcomes the gimbal
lock problem of Euler angles which, under special conditions,
results in the loss of one degree of freedom. Unit quaternions
are a non singular representation of rotations and widely used
in the field of three-dimensional computer graphics.27 (iii)
The flexibility of the ligand is accounted for by free rotation
of torsion angles (single bonds) of the ligand. This results
in a variable number of degrees of freedom that depends on
the size and topology of a molecule, meaning conformers
of a molecular conjugation. The resulting dimensionality of
the continuous search space is therefore 7 + T (with T being
the torsion number). The goal of a molecular docking
simulation is the prediction of the native bound structure of
a ligand in the binding site of its receptor, which is assumed
to be the global optimum of the search space. It is an
accepted approach to solve this molecular docking problem,
namely the finding of the native pose, using an optimization
algorithm.

Framework Design. The PARADOCKS software is written
in C/C++ and consists of modular functional units. Com-
munication is realized via interfaces (cf. Figure 1). Parallel
data processing is implemented via the Message Passing
Interface (MPI). The input files are in XML format for
simulation setup and in MOL2 format28 for ligand and
receptor coordinates. Subsequently, a molecular graph is
created for the ligand. Information on position, orientation,
and conformation of the ligand is stored in a 7 + T-
dimensional vector. The information is passed to the objec-
tive function for energy evaluation. The energy value (fitness
of the solution) is passed back to the metaheuristic and a
new iteration starts with the generation of new solutions.
PARADOCKS can hold different objective functions and
optimization algorithms. In addition, basic paradigms can
be changed; this includes an increase of the number of
degrees of freedom (e.g., by receptor flexibility), the linking
to external programs for energy evaluation, or even the
employment of multiobjective optimization.

Our aim is to present well working and robust software
for molecular docking. Beyond that, we want to invite other
scientists to participate in a joint development effort to

improve the program and to expand its functionalities. To
enable that we publish the source code of PARADOCKS under
the GNU General Public License (GPLv2)29 to ensure its
free use, the freedom to modify the underlying code, and
the redistribution. All parts of the program are as generic as
possible and should at least be fit for all metaheuristics-based
docking approaches. Implementation of new approaches,
namely, energy functions or search strategies is therewith
limited to the respective core functionalities, generic com-
ponents need only little to no modification. All public classes
and functions as well as the application programming
interface (API) are documented by the documentation system
Doxygen.30 We supply an advanced algorithm for the atom
type deduction based on topology subgraph matching similar
to the SMARTS31 system. The parsing of MOL2 files is
performed by a robust algorithm based on an Extended
Backus-Naur Form32 grammar. To allow easy testing of self-
implemented approaches, we provide an rmsd calculation
program for small molecules which takes molecular sym-
metry into account.

Optimization Algorithm. By design, PARADOCKS is able
to be used with different optimization algorithms. Based
on promising results by others,13–15 we decided to use
particle swarm optimization as an exemplary optimizer
implementation. The algorithm implemented here follows
PSO as introduced by Eberhart and Kennedy.16 Optimiza-
tion starts with a population of random solutions; the
search for optima is facilitated by updating generations,
making the swarm virtually fly through the search space.
The best position in search space so far (best solution
achieved) is tracked for the individual particle as well as
for the whole swarm. With the change of generations of
the swarm, the particles are accelerated toward these best
solutions. These accelerations are weighted by random
terms. The algorithm is shown in Algorithm 1 and features
two modifications to the original algorithm: (i) an inertia
weight c0 decreasing linearly over time33 and (ii) the
reinitialization with random position and velocity of
particles leaving the area of interest (the proximity of the
binding pocket). Initialization distributes the particles
equally in the search space. After evaluation of the
objective function, positions of each particle get adjusted
toward the best configuration in the particle’s history as
well as toward the configuration of the current best particle
of the swarm. The linearly decreasing inertia weight c0

in our implementation is intended to force exploration of
the search space and convergence to the global minimum
(exploitation).

Algorithm 1: Particle Swarm Optimization
for every particle P do

PX W random_ position ()
PV W random_velocity ()
PBX W PX

PBF W f(PX)
end for
i W 0
while i < maximum iterations do

for every particle P do
if molecule not in binding pocket then

PX W random_position ()
end if
N W neighborhood_best (P)

Figure 1. PARADOCKS design scheme. Boxes represent classes and
arrows represent the interfaces.
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PV ⇐ (c0 - i
maximum iterations)PV +

c1r1(PBX - PX) + c2r2(NBX - PX)

PX W PX + PV

F* W f(PX)
if F* better PBF then

PBF W F*
PBX W PX

end if
end for

end while

LEGEND: PX ) particle position; PV ) particle velocity;
PBX ) best position of the particle; PBF ) best fitness of
the particle; f(x) ) fitness function; c0 ) inertia weight;
c1 ) cognitive weight; c2 ) social weight.

Objective Functions. p-Score. The p-Score objective
function is an empirically derived energy function. The
docking energy Edock is dissected into

The van der Waals (vdW)-type interactions are modeled
by a Lennard-Jones potential calculated for pairs of the ligand
L and protein P atoms

The optimal vdW distance d0ij between atoms i and j is the
sum of the vdW radii of atom i and atom j. dij is the actual
distance between atoms i and j. The 8-4 form of the potential
is “softer”.34 The resulting reduced penalty for close contacts
accounts for a limited flexibility of the receptor without
explicitly modeling receptor flexibility.35 Einternal is defined as
an 8-4 potential of the same form as EvdW. But with the
difference that only destabilizing positive values contribute to
Edock. Einternal acts solely as penalty for internal vdW clashes.

The second contribution to the p-Score docking energy
describes electrostatic interactions. This type of interaction is
crucial for a correct description of specificity and affinity and
hence crucial for molecular docking. The strength of the
interaction depends on orientation and distance and thus Eestat

is calculated by an angle- and distance-dependent potential

In all cases, the energy contribution depends on the
distance dij of the atom pairs i and j. The function terms
f(θ1ij) and f(θ2ij) are not needed (set to 1) for ionic interactions
as there is no angle dependency for this type (cf., Figure
2a), whereas lone-pair or hydrogen bond interactions demand
modeling of the angle dependency. The description distin-
guishes between potentials for ionic interactions and hydro-
gen bonding with freely rotatable or frozen donor and
acceptor atoms. A donor or acceptor atom is considered to
be frozen if it is within a chain of heavy atoms, otherwise,
if it is the terminal of a chain of heavy atoms, its lone pair
or hydrogen can rotate freely. In the case of a freely rotatable
hydrogen or lone pair θ1ij and θ2ij are calculated between

the heavy atoms of the hydrogen bond as shown for atom j
in Figure 2b and atom i in Figure 2c. For frozen donor and
acceptor atoms the angles θ1ij and θ2ij correspond to the angle
between the hydrogen or lone pair, respectively, and the two
heavy atoms of the hydrogen bond as shown in Figure 2d.
The linear potentials follow the formulas

The last term of eq 2, Einternal, evaluates the ligand
conformation for vdW-clashes by using an 8-4-Lennard-
Jones potential for all ligand atoms i and j which have at
least 4 bonds distance

PMF04. PMF04 is a knowledge-based objective function.
This allows the exploitation of the vast amount of experi-
mentally determined protein-ligand structures as a basis for
molecular docking. Muegge et al. have shown the capability
of statistical potentials for molecular docking by implement-
ing PMF scoring24 into the DOCK4 program.36 We imple-
mented the statistical potential PMF0425 for molecular
docking with PARADOCKS. PMF04 is derived from 6611
protein ligand complexes and describes the interactions of
17 protein atom types with 34 ligand atom types in form of
pairwise potentials

with gij(dij) the density of the atom pair ij in distance dij and
gref the average density of atom pair ij. For a detailed
description, we point to the original publication.25 We will
continue with the necessary adaptations to use PMF04 as
an objective function for molecular docking with PARA-
DOCKS. The original close distance penalty of 3 kcal/mol is
far too low for use with molecular docking, since its use
results in overlapping of the ligand with receptor atoms after
optimization. To circumvent this, the repulsion part of an
8-4 Lennard-Jones-potential has been added as the close
distance penalty of PMF04. The Lennard-Jones-potential
Einternal (cf., eq 8) describes the conformation of the ligand.
The docking energy Edock is calculated as follows:

with

Edock ) EvdW + Eestate + Einternal (2)

Evdw ) ∑
i∈P

∑
j∈L

[(d0ij

dij
)8

- 2(d0ij

dij
)4] (3)

Eestat ) ∑
i∈P

∑
j∈L

f(dij)f(θ1ij)f(θ2ij) (4)

f(dij) ) {1 dij e (d0ij - k1)
(1/k1) · (d0ij - dij) (d0ij - k1) < dij e d0ij

0 dij > d0ij

(5)

f(θ1) ) {(1/k2) · (k2 - |θ1 - ki|) 0 e |θ1 - ki| e k2

0 |θ1 - ki| > k2

(6)

f(θ2) ) {(1/k3) · (k3 - |θ2 - kj|) 0 e |θ2 - kj| e k3

0 |θ2 - kj| > k3

(7)

Einternal ) ∑
i∈L

∑
j∈L

[(d0ij

dij
)8

- 2(d0ij

dij
)4] (8)

Wij(dij) ) -ln
gij(dij)

gref
(9)

Edock ) EPMF04 + a · Einternal (10)

EPMF04 ) ∑
i∈P

∑
j∈L

Wij(dij) (11)
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RESULTS AND DISCUSSION

Parameter selection for the PSO and the objective func-
tions, as well as the benchmarking for docking accuracy and
virtual screening performance of PARADOCKS, were per-
formed under the following paradigm: a useful molecular
docking setup has to distinguish the quality of different poses
of a receptor-ligand pair, as well as the quality of different
potential ligands with respect to a receptor. The actual
performance was compared to GOLD;9 for further compari-
son, we point the reader to recent articles that feature
extensive performance analysis of docking algorithms.15,37–39

Parameter selection was performed on the (Astex DiVerse
Set40). For the evaluation of the docking accuracy, the
PDBbind core set41 was used; for assessing the virtual
screening performance the directory of useful decoys
(DUD)42) was employed. For all docking setups, identical
initial coordinates of the ligand and the receptor were used.
Where necessary, hydrogens were added to the crystal
structures with the MOE program.43 The initial conforma-
tions and orientations of all ligands were randomized.

Parameter Selection. Particle Swarm Optimizer. We
found a limit of 150 000 iterations and a number of 20
particles to be sufficient for a good sampling and robust
results. The search efficency is best with a cognitive weight
c1 ) 1.0, a social weight c2 ) 3.4, and a constricting inertia
weight c0 ranging from 1.0 to 0.2. These parameters were
selected in systematic tests of parameter combinations. The
complex of the HIV-1 reverse transcriptase and its inhibitor
TNK-651 (PDB 1JLA)44 served as a typical example with 7
rotatable bonds and therefore average dimensionality. Be-
cause of its nondeterministic nature, every molecular docking
experiment was repeated 400 times to generate comparable
average results (this computation takes about four hours on
a single 2.53 GHz Intel Xeon CPU). The average of the
optimized score was compared and the parameter combina-
tion with the best average score is listed above.

p-Score. The parameters for p-Score were derived based
on the assumption that an energy function for molecular
docking has to evaluate the X-ray structures of a training
set always better than alternative structures. The p-Score
parameters to be optimized were the optimal vdW distances
d0ij as used in eqs 3 and 8 and k1, k2, and k3 as in eqs 5-7.

The Astex Diverse Set,40 a collection of high resolution
(<2.5 Å) crystal structures of proteins and their drug-like
ligands, was used as training set. For each protein ligand
pair of the test set, 50 ligand conformations (decoys) with
an rmsd relative to the X-ray structure above 2 Å and at
least 22 decoys with an rmsd < 2 Å were generated. All
decoys differed with an rmsd > 2 Å from each other. In the
following, each of the up to 80 decoys per protein ligand

pair was evaluated with an parameter set for the p-Score
objective function. To indicate the quality of a parameter
set, the ratio between decoys evaluated better or worse than
the crystal structure was estimated

An initial set of parameters was taken from X-SCORE21 and
improved by means of a randomized local search minimizing
QP until no substantial changes of QP were observed
anymore. The parameter optimization result was QP ) 0.051,
meaning that in more than 95% of all cases the crystal
structure scores better than the decoys. The quality of the
resulting vdW parameters can be seen in the fact that for
89% of all ligands in the PDBbind core set41 we find at least
one generated conformation which has an rmsd of less than
2 Å to the X-ray structure. The resulting vdW distances d0ij

and the electrostatic parameters k1, k2, and k3 for the p-Score
function can be found in the Supporting Information.

PMF04. Factor a ) 0.25 of eq 10 was found by an
exhaustive search with the objective of accumulating docking
poses from the Astex diverse set that have an rmsd below 2
Å to the X-ray structure.

Docking Accuracy. The PDBbind core set41 contains 210
protein ligand pairs in 70 groups. Each group consists of
proteins whose sequences are highly similar but that are
complexed with ligands of low, medium, or high affinity,
respectively. PARADOCKS runs were repeated 50 times per
complex, and default parameters for the PSO were used.
GOLD was used with automatic parameter settings with a
selected search efficiency of 100%. The results of the docking
simulations were clustered with a 2 Å rmsd cutoff and
compared to the respective X-ray structures. A histogram
plot of the results is shown in Figure 3, and numerical values
are given in Table 1. 58% of the PMF04 dockings and 63%
of the p-Score dockings found the native pose (GOLD 69%)
within the three highest-ranking clusters.

We observe a significant decrease of the docking accuracy
with the increase of the number of freely rotatable bonds;
this effect is also observed for GOLD, but to a lesser extent
than for PARADOCKS (cf., Figure 4a). There are two possible
reasons for this effect: (i) The simple description of the
ligand’s conformation in p-Score and in our implementation
of PMF04 might lead to the observed decrease in docking
accuracy for ligands with more than 10 rotatable bonds. (ii)
The same increase of torsional degrees of freedom leads as
well to a substantially larger search space to sample. The
simplified description of the ligand by avoiding van der
Waals clashes is sufficient to predict meaningful ligand
conformations. After fitting of the ligand conformations to

Figure 2. p-Score differentiates between multiple possibilities for electrostatic interactions, for example, (a) ionic interactions, (b) cation-lone
pair interactions, (c) frozen acceptor and rotatable donor, and (d) frozen acceptor and donor.

QP ) number of decoys scored better than crystal structure
number of decoys scored worse than crystal structure
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the X-ray structure, for 89% of all ligands in the PDBbind
core set,41 we find at least one conformer with an rmsd below
2 Å. The suggested standard settings for the optimization
work well on average-sized problems. For ligands with more
than ten torsional degrees of freedom, adapted docking
settings should be used.

However, 75% of the substances listed in the world drug
index (WDI)45 have less than ten freely rotatable bonds (cf.
Figure 4(b)). The general characteristics of drug molecules,
as summarized, among others, by Lipinsky et al.46 or Veber
et al.47 point toward smaller molecules with less than ten
rotatable bonds as well.

Virtual Screening Performance. In virtual screening
experiments, molecular docking is employed to find potent
lead structures from large compound libraries. Thus it is of
paramount importance to avoid false positive solutions. To
thoroughly analyze the virtual screening performance of
ParaDockS we selected a subset of 13 targets from the
directory of useful decoys (DUD)42 as described by Cheeseri-
ght et al.,48 with at least 15 clusters of active compounds
for each target. The 13 targets are: angiotensin-converting

enzyme (ace), acetylcholinesterase (ache), cyclin-dependent
kinase 2 (cdk2), epidermal growth factor receptor (egfr),
factor Xa (fxa), HIV reverse transcriptase (hivrt), enoyl-acyl
carrier protein reductase (inha), P38 mitogen-activated
protein (p38), phosphodiesterase 5 (pde5), platelet-derived
growth factor receptor kinase (pdgfrb), src tyrosine kinase
(src) and vascular endothelial growth factor receptor (vegfr2).
The data sets were downloaded from DUD in mol2 file
format.49 For PARADOCKS we used the default PSO settings
with 30 repeats per instance with PMF04 and p-Score, in
addition, the results of the p-Score dockings were rescored
with PMF04. For GOLD the genetic algorithm with ten
repeats was used with each of the three available energy
functions GoldScore, ChemScore, and the Astex Statistical
Potential (ASP). The virtual screening perfomance is now
assessed by the ability to distinguish known-active com-
pounds (P) from the selected decoys (N). For each compound
in the sorted row, the true positive rate (TPR) and the false
positive rate (FPR) were calculated. Solutions that score
better or equal than that particular compound are defined as
positive solutions. Active compounds within the range of
positive solutions are true positives (TP) and decoys within
the range of defined positive solutions are false positives
(FP). TPR and FPR are calculated according to

and

The receiver operator characteristic (ROC) diagrams
resulting from plotting the TPR and FPR values are shown
in Figure 5. Ideally, ROC curves show a steep early ascent,
almost parallel to the y -axis and then, close to the maximal
value for y, continue parallel to the x -axis. Such a behavior
can be exemplary seen for PARADOCKS with p-Score/PMF04
on the hivrt data set and for GOLD with GoldScore on the
cox2 data set. However, most of the curves exhibit an
sigmoidal shape. A good metric to assess the overall quality
of a screening approach is the area under the ROC curve
(AUC). The AUC gives the probability that a randomly
chosen active is ranked higher than a randomly chosen
inactive by the respective method. In Table 2 the AUC values
are given, the methods exhibit similar perfomance. GOLD
with ChemScore50 and the Astex statistical potential (ASP)51

Figure 3. Comparison of the docking accuracy of PARADOCKS with
p-Score and PMF with GOLD on the PDBbind core set. The data
is plotted as an additive histogram for the highest ranked three
clusters.

Table 1. Docking Quality of PARADOCKS with the Scoring
Functions p-Score and PMF04 in Comparison to GOLDa

native pose in clusters

docking approach 1 1 and 2 1, 2, and 3

PARADOCKS/PMF04 47% 52% 58%
PARADOCKS/p-Score 52% 61% 63%
GOLD 62% 69% 69%

a The threshold for the native pose is a rmsd of 2 Å.

Figure 4. (a) The fraction of successful dockings (rmsd of 2 Å or better) of the PDBbind core set for PARADOCKS with p-Score and PMF,
respectively, and with GOLD as a function of the number of rotatable bonds of the ligand. (b) Distribution of compounds in the WDI45

with respect to the number of rotatable bonds.

TPR ) TP
P

(12)

FPR ) FP
N

(13)
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Figure 5. ROC curves to compare the performance of the different VS methods in PARADOCKS and GOLD. The lines are colored as
follows: PARADOCKS with PMF04 in blue, PARADOCKS with p-Score in cyan, PARADOCKS docked with p-Score and rescored with PMF04
in green, GOLD with GoldScore in red, GOLD with ChemScore in orange, GOLD with ASP in purple.

Table 2. AUC Values for the ROC Curvesa

target PMF04 p-Score p-Score/PMF04 GoldScore ChemScore ASP DOCK

ace 0.49 0.49 0.49 0.46 0.44 0.34 0.68
ache 0.60 0.54 0.58 0.47 0.69 0.57 0.68
cdk2 0.56 0.59 0.54 0.68 0.63 0.68 0.57
cox2 0.46 0.42 0.48 0.87 0.80 0.71 0.82
egfr 0.52 0.50 0.47 0.36 0.46 0.37 0.57
fxa 0.71 0.51 0.68 0.69 0.72 0.78 0.73
hivrt 0.68 0.47 0.78 0.41 0.59 0.55 0.68
inha 0.58 0.50 0.60 0.29 0.70 0.56 0.27
p38 0.56 0.57 0.60 0.45 0.63 0.64 0.42
pde5 0.61 0.61 0.56 0.69 0.73 0.90 0.56
pdgfrb 0.45 0.51 0.42 0.39 0.63 0.49 0.36
src 0.51 0.66 0.48 0.44 0.67 0.76 0.48
vegfr2 0.49 0.54 0.45 0.39 0.70 0.73 0.38
Average 0.56 0.53 0.55 0.51 0.65 0.62 0.55

a The highest AUC value for each test set is highlighted in bold numbers. The screening method is abbreviated by the scoring method in use.
Results for DOCK were taken from ref 48.
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show average values above 0.6, DOCK averages at 0.55, and
PARADOCKS reaches 0.56 with PMF04, 0.53 with p-Score,
and 0.55 with PMF04-rescored p-Score results. It is worth
mentioning that PARADOCKS is hardly producing strong
outliers with AUC values significantly below 0.5.

For practical reasons, the enrichment within the few top-
ranking solutions is of great interest; economic demands
allow only the processing of a limited number of compounds.
ROC enrichment52 is defined as the ratio of TPR to FPR for
a given range of decoys and gives a good measure for the
“early” enrichment in a virtual screening experiment. The
advantage of ROC enrichment values is their independence
from the composition of the test set. Most of the ROC curves
in Figure 5 are sigmoidal, where it is striking that PARA-
DOCKS with PMF04 produces mainly very steep ascending
ROC curves. The magnification in Figure 6 puts the focus
on the top-ranking 5% of solutions and highlights the high
early enrichment. Especially for the very early enrichment

(upper 1%) in Table 3, the superiority of PARADOCKS is clear,
especially in combination with the PMF04 objective function.
At 5% ROC enrichment (cf., Table 4) the advantage of
PARADOCKS is still significant.

In Figure 7, exemplary docking results of two active
compounds to the HIV reverse transcriptase are shown. The
binding pocket of HIV-RT is narrow, and the shown docking
results in Figure 7 are correct. Although the deviations of
the predicted structures from the crystal structure are small,
the ranking is not necessarily good. The ligand emivirine in
Figure 7a is ranked sixth of 1437 by PMF04-rescoring of
p-Score results but on position 1310 by GoldScore. The
ligand nevirapine in Figure 7b is ranked on position 98 by
PMF04, on position 286 by GoldScore, and on position 1012
by p-Score.

Timings and Parallel Efficiency. The computing time is
of innate importance for the application of molecular docking
techniques especially when performing virtual screenings

Figure 6. The first 5% of the ROC curves enlarged to compare the early enrichment of the different VS methods in PARADOCKS and GOLD. The
lines are colored as follows: PARADOCKS with PMF04 in blue, PARADOCKS with p-Score in cyan, PARADOCKS docked with p-Score and rescored
with PMF04 in green, GOLD with GoldScore in red, GOLD with ChemScore in orange, GOLD with ASP in purple.

886 J. Chem. Inf. Model., Vol. 50, No. 5, 2010 MEIER ET AL.



with large libraries of compounds. To compare the timings,
a docking simulation with 50 consecutive runs of a test
instance (PDB 1JLA, HIV-1 reverse transcriptase and TNK-
652)44 was performed on an HP server (2.53 GHz Intel Xeon
CPUs). PARADOCKS with p-Score finishes after about one
hour. With PMF04 the timing is almost the same, the
advantage of the simpler energy function is reduced due to
the all-atom description. GOLD solves the given problem
in slightly less than half an hour.

Parallel computing offers a chance for speed-up and is of
special interest as there is a clear trend toward multicore
CPUs in servers and workstations. In initial studies on

parallel efficiency with artificial molecular docking setups
we observed almost linearly scaling parallel efficiency with
up to 512 CPU cores.53 However, in the current version the
amount of computing time needed to evaluate the interaction
was greatly reduced compared to these initial tests. The
current parallel implementation suffers from communication
overheads; neither the optimization algorithm nor the objec-
tive functions are, at the current stage, optimized toward
parallel processing. PARADOCKS with 4 CPU cores reaches
the speed of GOLD with 1 CPU core. While the amount of
simultaneous processes for many commercial solutions is
limited by the number of licenses purchased, PARADOCKS
is free software and not limited in the number of processes.
This allows to overcome the current speed limitations by
data parallel computation. Further details on timings and
parallel performance can be found in the Supporting Infor-
mation.

CONCLUSIONS

In the previous sections, we have introduced the molecular
docking software PARADOCKS. The main feature, the open
and easy extendable design, offers the possibility to imple-
ment one’s own approaches. In addition, the sofware is
equipped with a robust particle swarm optimizer and the two
objective functions PMF04 and p-Score. PARADOCKS does
not need extensive preprocessing of the input data. Input and
output of structures as well as parameters and results is

Table 3. ROC Enrichment Values at 1% for PARADOCKS, GOLD, and DOCK (from ref 48) across the 13 Selected DUD Targetsa

target PMF04 p-Score p-Score/PMF04 GoldScore ChemScore ASP DOCK

ace 44.1 35.2 17.6 4.4 2.1 2.1 8.7
ache 1.9 6.4 4.0 0.0 4.0 6.4 0.0
cdk2 61.0 32.0 39.5 16.4 16.4 16.4 10.6
cox2 6.6 0.9 16.1 23.4 21.9 58.5 16.9
egfr 24.7 5.6 16.6 0.0 0.8 0.0 4.1
fxa 11.7 0.7 11.7 2.2 3.7 20.1 9.5
hivrt 24.0 5.5 31.4 0.0 5.5 0.0 6.2
inha 45.9 45.9 91.2 0.0 40.5 6.6 0.0
p38 24.2 6.8 18.1 0.4 3.3 1.2 0.0
pde5 39.4 25.8 20.7 12.7 16.4 31.9 7.7
pdgfrb 47.2 35.8 35.8 3.4 4.9 1.3 0.0
src 48.9 10.3 20.1 2.7 5.8 11.4 1.0
vegfr2 55.2 23.1 30.9 1.3 35.7 7.8 2.1

a The screening method is abbreviated by the scoring method in use. The highest ROC enrichment value for each test set is highlighted in
bold numbers.

Table 4. ROC Enrichment Values at 5% for PARADOCKS, GOLD, and DOCK (from 48) across the 13 Selected DUD Targetsa

target PMF04 p-Score p-Score/PMF04 GoldScore ChemScore ASP DOCK

ace 7.1 8.3 5.0 3.0 2.1 0.4 3.9
ache 2.2 3.0 2.8 0.0 4.4 3.0 1.6
cdk2 6.4 6.9 6.9 4.3 7.5 4.8 3.0
cox2 2.0 0.5 3.3 12.3 8.6 9.0 10.0
egfr 6.9 2.5 4.9 0.5 0.5 0.2 3.5
fxa 5.5 0.8 5.5 2.5 3.8 7.0 5.1
hivrt 5.6 3.2 8.4 0.5 4.4 0.5 3.1
inha 8.9 7.5 8.9 0.0 7.8 5.0 0.0
p38 5.8 3.2 4.9 0.6 2.8 1.4 0.4
pde5 7.9 5.3 3.8 3.3 5.8 10.4 6.2
pdgfrb 6.1 6.8 4.8 1.0 1.3 0.5 0.2
src 7.7 5.6 4.8 1.7 3.7 5.6 0.4
vegfr2 6.5 5.1 5.1 1.1 8.0 3.8 0.8

a The screening method is abbreviated by the scoring method in use. The highest ROC enrichment value for each test set is highlighted in
bold numbers.

Figure 7. Visualization of example docking results from the virtual
screening experiments: (a) the ligand binding domain of the HIV
reverse transcriptase (PDB 1RT1) in complex with Emivirine
(green) and the docking results with p-Score (magenta), and
GoldScore (brown) and (b) the ligand binding domain of the HIV
reverse transcriptase (PDB 1VRT) in complex with Nevirapine
(green) and the docking results with PMF04 (yellow), p-Score
(magenta), and GoldScore (brown).
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organized in a way that makes the inclusion into existing
virtual screening pipelines easy. The code is well structured
and is documented by an automatic documentation system
to allow easy familiarization. Furthermore, developers of
optimization algorithms and scoring approaches will find the
open and modular design of the PARADOCKS framework
tailored for easy implementation and testing.

The performance was evaluated for three issues critical
for molecular docking and virtual screening: accuracy,
screening performance, and speed. In all three disciplines
PARADOCKS is reaching very promising results. The docking
accuracy, tested on reproducing the PDBbind core set,
reaches up to 73% with p-Score. To assess the virtual
screening performance, extensive testing with 13 targets of
the DUD was performed. The early enrichment performance
of PARADOCKS with the PMF04 objective function is superior
to all other tested approaches. Summarizing, p-Score appears
well suited for more accurate evaluations, while PMF04 is
apparently well suited for rapid evaluations and high enrich-
ment in virtual high throughput screenings. The particle
swarm optimizer performs well and is robust. It offers a
straightforward way for parallelization, but with current
objective functions the communication overhead is high.

Although PARADOCKS is ready for production use, the
software is under constant development. This first status
report would be incomplete without an outlook on upcoming
improvements and future development directions:

• Improvements of the description of the ligand conforma-
tion for the p-Score and PMF04 objective function are
planned.

• The receptor flexibility will be accounted for by an
explicit modeling of side chain flexibility.

• Further optimization techniques, for example, differential
evolution, will be implemented and their performance
analyzed.

• Improved load balancing and reduced communication
will increase the parallel efficiency. The use of compu-
tationally more demanding objective functions will
increase the parallel efficiency as well.

• The output of resulting structures will be changed to a
trajectory-like format.

PARADOCKS is free software and published under the GNU
General Public License (GPLv2).29

DOWNLOAD

Please refer to http://www.paradocks.org to download the
PARADOCKS source code and to find additional information.
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