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ABSTRACT

The identification of protein binding sites and the prediction
of protein-ligand complexes play a key role in the pharma-
ceutical drug design process and many domains of life sci-
ences. Computational approaches for protein-ligand dock-
ing (or molecular docking) have received increased attention
over the last years as they allow inexpensive and fast pre-
diction of protein-ligand complexes. Here we introduce the
principle of Bee Nest-Site Selection Optimisation (BNSO),
which solves optimisation problems using a novel scheme in-
spired by the nest-site selection behaviour found in honey-
bees. Moreover, the first BNSO algorithm — called Bee-Nest
— is proposed and is applied to the protein-docking prob-
lem. The performance of Bee-Nest is tested on 173 docking
instances from the PDBbind core set and compared to the
performance of three reference algorithms. The results show
that Bee-Nest could find ligand poses with very good energy
levels. Interestingly, the reference Particle Swarm Optimiza-
tion (PSO) produces results that are qualitatively closer to
wet-lab experimentally derived complexes but of worse en-
ergy than Bee-Nest. Our results clearly highlight the supe-
rior performance of Bee-Nest in semi-local (regional) opti-
mization for the molecular docking problem, and suggests
its usefulness in a hybrid strategy.
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1. INTRODUCTION

By recognizing small molecules, proteins act as the recep-
tors of ligands. These interactions are formed if the three
dimensional (3D) structure of the ligand fits into the bind-
ing pocket of the protein, like a key into a lock (see Figure
1 for an exemplary illustration). Knowledge about such in-
teractions is crucial for the understanding of physiological
processes and is a fundamental basis for the development of
pharmaceutical substances.

The 3D structural information has been experimentally
resolved for only a limited number of protein-ligand pairs,
while no such data is available for the vast majority of cases.
As resolving structural ligand-protein information experi-
mentally is quite costly, computational approaches have be-
come more and more established in the prediction of such
complexes [4]. Computational approaches allow the fast and
inexpensive screening of large libraries of potential ligands
against a variety of protein targets and thus serve as a means
of sampling potential ligand candidates, with the best results
then being further investigated in wet-lab experiments. Such
rapid in silico-screening methods are of growing importance
in the industrial drug design process.

From a computer science perspective, molecular docking
boils down to an optimization problem, namely finding the
protein-ligand pose with minimal binding energy. Given
a scoring function that estimates the binding energy of a
protein-ligand complex, the docking problem results in the
search for the global minimum in a multi-dimensional energy
landscape.

Several population-based metaheuristics such as genetic
algorithms [7], ant colony optimization [10] and particle swarm
optimization [11, 5, 13] (PSO) have been proposed to pro-
vide solutions to the problem of protein-docking. In this pa-
per a novel population-based metaheuristic for protein dock-
ing is outlined: the Bee Nest-Site optimization algorithm
(BNSO), which is based on the nest-site selection process in
honeybees.

Honeybees and the mechanisms underlying their collective
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Figure 1: A small molecular ligand visualised as a
chemical formula with internal degrees of freedom
highlighted by arrows (top) and the ligand bound
into the pocket of a tRNA-Guanine Transglycosy-
lase (bottom) as experimentally resolved by X-ray
crystallography (Protein Database entry 1K4G)

behaviour have recently served as a blueprint for several al-
gorithms in the field of swarm intelligence. Bee-inspired al-
gorithms have been proposed as solutions for problems as di-

verse as network routing [3], optimization [9], and robotics [16].

In the context of optimization, existing bee-inspired al-
gorithms are usually based on one of the following two be-
havioural concepts: the mating behaviour or the foraging
behaviour (see [9] for an in-depth review on bee-inspired
optimization approaches). A recent study [1] outlined the
optimization potential of another behaviour found in hon-
eybees: nest-site selection. Nest-site selection constitutes a
decentralized decision-making process in honeybees, where
a swarm of homeless bees has to identify and choose a new
nest-site among several potential sites. On the basis of a bi-
ological model, Diwold et al. [1] proposed a general scheme,
called Bee Nest-Site Selection Scheme, that can be used for
developing algorithms based on the nest-site selection be-
haviour of honey bees. As a proof of concept it was shown
that the Bee Nest-Site Selection Scheme can select good
nest-sites in dynamic and noisy environments, and that its
iterative application can lead to an optimization process con-
verging towards an optimum. Applying the Bee Nest-Site
Selection Scheme for optimization is called Bee Nest-Site op-
timization (BNSO) here and the corresponding optimization
algorithms are called Bee Nest-Site optimization algorithms
(BNSO algorithms).

In this paper we develop the first Bee Nest-Site optimiza-

tion algorithm called Bee-Nest for solving a complex op-
timization problem. Bee-Nest is applied to the molecular
docking problem. The algorithm is realized in ParaDocks,
a molecular docking framework specially developed for pop-
ulation based heuristics [13] *. To benchmark the perfor-
mance of the Bee-Nest for the docking problem, instances
from the PDBbind database core-set [20] were used for test-
ing. The obtained optimization and sampling performance
was compared to a PSO algorithm that was previously pro-
posed for docking [13], as well as randomly selected, solu-
tions and solution derived using local optimization.

This paper is structured as follows. In Section 2 the bio-
logical background of nest-site selection in honeybees is de-
scribed. Section 3 introduces the BNSO principle and the
Bee-Nest algorithm. The experimental setup, the docking
framework, and the data-set used for benchmarking are de-
scribed in Section 4. Results are presented in Section 5 and
concluding remarks are given in Section 6.

2. BEE NEST-SITE SELECTION

Nest-site selection is part of the reproductive cycle of hon-
eybee swarms. When a bee colony reaches a certain size, its
reproductive mechanisms are triggered by the production of
new queens. While one of the new queens will inherit the
established hive and two thirds of its worker population, the
old queen and the remaining workers will leave in search of
a new hive [18].

The old queen and her followers are called a reproductive
swarm. They will settle in a temporary location shortly after
leaving the hive. The majority of workers will stay with the
queen shielding her from external threat by forming a tight
cluster around her. A small fraction of the swarm (approxi-
mately 5%) will start the nest-site selection process. Scouts
leave the swarm to search for suitable new nest-sites such
as cavities in trees or buildings. Upon finding a potential
nest-site, a scout will assess several aspects of the site such
as its volume, height, and the size of the entrance in order
to evaluate its quality [18].

Sites of sufficient quality will be advertised by the scouts
upon their return to the swarm. A scout that has found
a potential nest-site will advertise it with a waggle dance,
which encodes the direction and distance to the site. The
duration of the waggle dance encodes a site’s quality. Bees
that follow a waggle dance learn about the nest-site’s lo-
cation and will visit it after the dance for an independent
evaluation.

When its dance is over, a scout will return to the nest-site
it promoted and reassess it, then it returns to the swarm and
readvertises it again. The number of dances a scout performs
for the same nest-site over consecutive visits decreases at a
constant rate, a phenomenon known as dance attrition [19].
While this process of quality-independent dance attrition
prevents the swarm from becoming deadlocked in their deci-
sion [15], it will still ensure that better nest-sites are longer
and more often danced for, which leads to more individuals
being recruited to high-quality sites than low-quality sites
over time.

During nest-site assessment, a scout also estimates the
number of other scouts present at that given site. If the
number of scouts exceeds a certain threshold (called quorum

ParaDocks can be downloaded from

http://www.paradocks.org



in this context) a decision has been made. Scouts present at
the site will fly back to the swarm and initiate the swarm’s
lift-off.

The airborne swarm will then move towards the chosen
site. The mechanism underlying the swarm’s flight is still
under debate. The best established hypothesis is that in-
formed scouts guide the swarm towards a new location by
flying rapidly through the swarm in the direction of the nest
site [17]. Finally, after reaching the new nest-site the bees
move in and establish a new hive.

3. ALGORITHM

Bee Nest-Site optimization (BNSO) is an application of
Diwold et al.’s Bee nest-Site Selection Scheme [2] (BNSSS),
which itself constitutes an optimization-oriented extension
of the individual-based nest-site selection model for honey
bees developed by Janson et al. [6].

A Bee-Nest optimization starts with a colony of virtual
bees being placed at a random position in search space. Here
the search space represents an environment and each posi-
tion in the search space corresponds to a potential nest-site
(solution). The quality of a nest-site is given by the value of
the function to be optimized at the corresponding position.

Using the principles of nest-site selection the colony tries
to find a nest-site of better quality than its current location.
A colony contains two types of bees: scouts and followers.
The selection process begins with scouts trying to find po-
tential nest-sites in the surroundings of the swarm’s current
location. If the scouts are able to find a location that is of
acceptable quality, they report it to the swarm. Followers
choose a scout to follow based on the quality of the nest-site
it has found (i.e., scouts that found better nest-sites will at-
tract more followers). The follower then flies to the location
the scout found and searches the surrounding to eventually
find a better location. If the colony is able to come up with
a location that is of better quality than its current loca-
tion it will relocate itself to the new location and restart the
nest-site selection process. Otherwise, the colony repeats
the selection process at its current location.

More formally: Given a dim dimensional function F' that
is to be minimized and a swarm of n virtual bees consisting
of Nscout scouts and N yoniower followers (i.e., n = Nscout +
Nfollower). The swarm is initially placed on a randomly cho-
sen location pswarm = (Z1,...,Zdim) in the search space.
Each scout s chooses uniformly at random a location ps with
the restriction that it has at most distance dscout X fr to the
swarm’s current location (i.e., |Pswarm — Ds| < dscout X fr).
Here dscout is a parameter and fr (0 < f, < 1) is a factor
that decreases over time in order to achieve an increasingly
local search of the algorithm in the course of the optimiza-
tion. One possibility of defining f,. is to predefine a max-
imum number of iterations MAXITER per optimization
run and adapting f, accordingly by

iteration

Fe == AXITER (1)

where iteration is the number of the current iteration. It
is checked if the quality of the chosen location is sufficient
such that F(ps) < F(pswarm) X fq, where parameter fq
(0 < fq < 1) is a quality factor. In that case the scout
has found a potential nest-site at location ps, which can
then be chosen by the followers. The probability to be cho-

Algorithm 1 Bee-Nest

1: place swarm on random location p, i.e., Pswarm = P

2: repeats = 0;

3: while stop criterion not satisfied do

4: reduce frange according to Eq. 1

for all scouts do
Choose new location ps with a max distance of
dscout X frange to the nest

7 fits = max{0, (F(pswarm) X fq) — F(ps)}

8 end for

9:  for all followers do

O.

1

1 Choose a scout s according to Eq. 2

11: Choose new location pfoower With a max distance
of dfoliower to chosen scouts position ps

12: Sample search space between ps and pfoiower in M
flight steps

13: end for

14:  if better location p was found then

15: Relocate swarm to p, i.e., Pswarm = P

16: else

17: if repeats > MAXREPEATS then

18: Place swarm on new random location p, i.e.,

Pswarm = P

19: repeats=0;

20: else

21: repeats+-+;

22: end if

23:  end if

24: end while

sen by a follower depends on its relative fitness defined by
fits = max{0, (F(pswarm) X fq) — F(ps)}.

After each scout has updated its location, each follower f
chooses one scout using a standard roulette wheel selection
so that the probability Ps of choosing scout s is

it
S it

Each follower is then placed to the location of the scout it
has chosen. Then the follower chooses uniformly at random
a location py in the vicinity of the scout’s location ps such
that it is not further distant than a dyoiiower (1-€., |ps —py| <
dfoliower) Where dfoliower is a parameter. Then the follower
samples the search space between ps and py in a directed
flight consisting of m equal length flight steps where at the
end of each step function F is evaluated.

During the whole process the system maintains the best
solution ppes: found so far. If the swarm is able to find a
better location than its current location (i.e., F(ppest) >
F(pswarm)) it migrates to the new location. Otherwise it
restarts the nest-site selection process from its current lo-
cation. If a swarm is not able to improve its location in
MAXREPEATS nest-site selection attempts it is moved
to a random location in the search space and the nest-site
selection process restarts. The algorithm terminates when a
given stopping criterion is satisfied.

For a better understanding a pseudocode of Bee-Nest is
presented in Algorithm 1. A visualization of a search run
over 4 nest-site relocations, containing the search trajecto-
ries of the scouts and the followers, on a two dimensional
Sphere function is shown in Figure 2.

P, (2)
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Figure 2: Visualization of a BNSO optimization run over 4 nest relocations (in this case on a two dimensional

Sphere benchmark function)

4. EXPERIMENTAL SETUP

Modeling of molecules and molecular complexes in chem-
istry and biochemistry always features a variety of approxi-
mations, some of which affect the number of degrees of free-
dom (DOF), i.e., the dimension of the search space. In the
approximation that used in this paper, a ligand-receptor
pose is described by a vector containing three Cartesian
coordinates for the ligand’s position, its orientation is de-
scribed by the three DOF of a quaternion, and the N in-
ternal DOF describe the ligand’s conformation. In the test
instances the internal flexibility ranges up to N = 35 inter-
nal DOF. Thus, the search space with 7+ N dimensions, can
be up to 42-dimensional. The conformation of the receptor
is regarded to be rigid (this is an accepted approximation
in the field). 173 instances from the PDBbind core set [20]
database were used to test and compare the performance of
the algorithms.

The statistically derived potential PMF04 was used to de-
scribe the binding energy landscape between ligand and re-
ceptor as pair-wise potentials of ligand and receptor atoms:

gij (dij
Wij(dij) = —In gialdy) ()
Gref

with g;;(d;;) the density of the atom pair 45 in distance d;;
and gr.s the average density of atom pair ij. PMF04 is de-
rived from 6611 protein ligand complexes and describes the
interactions of 17 protein atom types with 34 ligand atom
types. For a detailed description we point to the original
publication by Muegge et al. [14]. The adaptations neces-

sary to use PMFO04 for molecular docking are described in
[13].

The following three optimization algorithms were employed
as a reference:

PSO: The PSO was used with the settings suggested in
[13] with 30 particles evaluated in 300,000 generations.

RNDM: Nine million random poses were generated
based on the Mersenne twister algorithm published by
Matsumoto et al. [12], the best result was kept.

RHC: 9,000 randomly chosen poses were locally opti-
mized by 1,000 hill climbing steps. Lower energy poses
are accepted, higher energy poses are discarded.

For the molecular docking problem the BNSO algorithm
Bee-Nest was slightly extended with a local search as fol-
lows. When a better nest-site p,, was found, by a scout or
follower, a simple random walk, outlined below in Algorithm
2, was applied to the location for MaxLO > 1 times for the
purpose of local optimization. This random walk generates
for MaxzLO times a uniformly at random chosen location in
the vicinity of the current best location p,»,. The maximum
distance of the randomly generated location p, to the cur-
rent best location pny is restricted to |pr — prn| < fi * dscout
where f; is a parameter. Parameter f; decreases over the
steps of the local search towards 0 (details see Algorithm
2), this leads to the convergence of the new locations p, to
Pnn. The random walk is also applied to the final location
returned by the BNSO for PostLO times.

For the experimental runs of the BNSO algorithm the
following parameter settings used: n = 30, Nscour = 10,



Algorithm 2 Random Walk

1: for k€ 0... MaxzLO do

2. fi=(1—-k/MaxLO)/16

3: Generate new random solution p, with |pr — pnn| <

fl * dscout
if (F(pT) < F(pnn) then

4
5: Pnn = Pr
6
7

end if
: end for

Nfottower = 20, f; = 0.95, MAXREPEATS = 20, MaxzLO =

4, PostLO = 4096. Since in the context of molecular dock-
ing, the dimensions of the search space correspond to differ-
ent aspects of the problem (position, orientation, rotations of
single axes in the molecules (internal DOF)) different values
of dscout (dfoliower) are used for the different types dimen-
sions in order to determine the range within to search for
new locations around the current nest location (respectively,
around the location of the scout):

0.003616 x SpaceRange, for position
0.001084 x 27, for orientation
0.027854 x 27, for internal DOF's

dscout =

0.025366 x SpaceRange, for position,
dfoliower = § 0.039257 x 27, for orientation
0.012289 x 27, for internal DOFs

For each of the four algorithms every test for each of the
173 test instances 9,000,000 energy evaluations have been
done. Each test case was repeated 50 times. The test results
allow to draw conclusions about the quality of the solutions
and the robustness of the algorithms with regards to the
molecular docking problem. The binding poses and the es-
timated energies resulting from each test run were recorded
for each algorithm and are discussed in the next section.

5. RESULTS

Tables 1,2 and 3 show a comparison of minimum (respec-
tively, median, mean) energy values achieved by the four al-
gorithms on average over all test-instances. As can be seen,
the BNSO algorithm Bee-Nest performs very well. It is able
to achieve better energy values than PSO as well as RHC
and RNDM on the majority of the test instances for all three
criteria.  The random hill climbing method (RHC) shows

Table 1: Minimum energy value comparison for all
173 test instances. Each cell denotes the number of
test instances for which the minimum energy value
obtained in 50 test runs of the algorithm stated in
the row was better (i.e., lower) than the minimum
energy of the algorithm stated in the column.

Alg vs. Alg | PSO | BNSO | RNDM [ RHC
PSO - 32 172 | 134
BNSO 141 - 173 | 168
RNDM 1 0 - 0
RHC 39 5 173 -
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Figure 3: Scatter plots comparing the median per-
formance (energy) of two algorithms for all test in-
stances. Each data point indicates the contrasted
algorithms’ performances on a specific test instance.
Points lying on the diagonal reflect comparable per-
formance by each algorithm. As lower energy re-
flects better performance, points above the diagonal
indicate better performance by the algorithm indi-
cated on the x-axis, and vice versa.
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Table 2: Median energy value comparison (analo-
gously as in Table 1.

Alg vs. Alg | PSO | BNSO | RNDM | RHC
PSO - 74 173 116
BNSO 99 - 171 142
RNDM 1 0 - 0
RHC 39 5 173 -
Table 3: Mean energy value comparison (analo-
gously as in Table 1.
Alg vs. Alg | PSO | BNSO | RNDM | RHC
PSO - 7 173 113
BNSO 96 - 173 133
RNDM 0 0 - 0
RHC 60 40 173 -

a decent performance, which is slightly worse than PSO and
BNSO. The randomly generated solutions of RNDM are out-
performed in each aspect by the other algorithms. Table 1
suggests that BNSO is especially capable of finding very low
energy levels. In comparison with PSO it found the protein
conformations with the lowest energy levels in 141 of the
173 test instances. Figure 3 depicts scatter plots of the me-
dian energy levels found by the BNSO, PSO, and RHC in all
test instances. Scatter plots for the RNDM are omitted as
its performance was very poor in general (see Tables 1-3).
In Figure 3 the x-value corresponds to the median energy
value of one algorithm for a given protein docking instance
and the respective y-value corresponds to the energy value
of a reference algorithm for the same docking instance. Val-
ues on or close to the diagonal denote test-cases where the
algorithms showed a similar performance with reference to
the energy levels. Values above the diagonal correspond to
instances where the algorithm on the x-axis achieved better

energy values and values below denote instances where the
algorithm on the y-axis produced better energy values.

As can be seen in Figure 3(a) PSO and BNSO perform
on par in instances with high energy levels (which usually
corresponds to proteins with a small number of rotatable
axes). In comparison to PSO the performance of BNSO im-
proves for instances with a higher number of rotatable axes
in the ligand. This can also be observed when comparing
the BNSO with the RHC.

Figure 5 shows beanplots (see [8] for more details) de-
picting the estimated energy level distributions of the 50
solutions found by BNSO and PSO for a representative sub-
set of docking instances from the test set. As can be seen
the spread and thus the solution diversity increases with the
increase of the internal flexibility of the ligand (number of
rotatable axes). This is not surprising as this increases the
dimensionality of the search space and thus leads to a more
complex fitness landscape. In cases of an increased num-
ber of rotatable axes, the distribution of the PSO’s energy
levels is quite narrow in comparison to the BNSO’s energy
level distribution. This suggests that PSO generates protein
ligand poses that are similar. Compared to that BNSO is
more likely to produce a variety of poses during the 50 test
runs, especially for proteins with many rotatable axes. Fur-
thermore, the behaviour illustrated in the plots (Figure 5)
also suggests that BNSO has some problems of escaping lo-
cal optima. This is best seen for the docking instance 1fcz,
where the BNSO converges to either one of two possible min-
ima, one with a suboptimal energy level around -800 and one
with an optimal energy level around -1300. In contrast, PSO
converges towards a configuration at the low energy level in
most of the cases. However, such a spread can also be ben-
eficial; for example in the docking instances 10gs and 5erl,
where BNSO is able to reach lower energy levels whereas the
PSO is apparently stuck in suboptimal configurations.

5.1 Root mean square deviation

As pointed out above, the energy levels of the protein
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configurations found by BNSO in comparison to the refer-
ence algorithms are promising as they are in general of lower
energy. In order to judge the biological significance of the
calculated poses, the root mean square deviation (RMSD)
was calculated for the best results found for each instance by
each algorithm. RMSD is often used to measures the average
distance between the different conformations of molecules.
Here we compute the RMSD of the poses generated by our
docking experiments with respect to wet-lab experimentally
derived 3D structures resolved by X-ray crystallography.
Thus, the RMSD value is a good estimate for the biologi-
cal plausibility of the calculated conformation. RMSD gives
the deviation of the generated protein-ligand pose from ex-
perimentally generated reference in Angstrém (0.1nm). As
proteins are not rigid bodies in space, RMSD values of up
to 2.5A can be considered as a reasonable fit.

Figure 5 depicts a cumulative histogram of the RMSD val-
ues of the solutions generated by the four algorithms RNDM,
RHC, PSO, and BNSO. The solutions produced by the PSO
show the best fit regarding the real position and conforma-
tion of the ligand in the receptor. Whereas, BNSO and PSO
produce roughly the same amount of conformations that are
a very close fit (i.e., 13% and 14% of the poses produced by
the BNSO and PSO, respectively, have an RMSD < 0.5%1)7
this does not hold for higher RMSD values. Only 36% of
the solutions found by BNSO have a RMSD value < 2.5A4,
whereas this is the case for 47% of the conformations pro-
duced by PSO. This result is unexpected, as it was shown
in the last section that the energy levels of the conformation
produced by BNSO are in general lower than those of PSO
conformations.

There are two potential explanations for this observation:
As outlined earlier, receptor-ligand conformations are eval-
uated using approximate energy functions to estimate their
energy. Thus, part of the problem can come from the accu-
racy of the scoring function. It could, for example, be the
case that the low-energy conformations found by the BNSO
are not plausible in comparison to the real conformation.
However, this can only explain a part of this odd behaviour,
as this argument also applies to the solutions generated by
the PSO. Another explanation for this phenomenon is that
even though BNSO gets stuck in local optima sometimes it
is still able to adapt the conformation of the ligand in such a

way that it leads to low energy values. This would highlight
the ability of BNSO to generate low-energy solutions, but
also shows its limited ability to overcome larger energy bar-
riers during the optimization process, as BNSO has a single
position (i.e., receptor-ligand pose) as a starting point which
is then continuously improved. In contrast, PSO performs
a more thorough global search, as PSO starts off with its
particles distributed in the whole search space. Molecular
docking fitness landscapes are by no means a steady envi-
ronment. Usually, only a very limited number of conforma-
tions yield low energy levels and seemingly small variations
in the conformations can lead to a drastic quality change. It
could thus be that while BNSO outperforms PSO in terms
of fine-tuning the conformation of the protein-complex, it is
not able to creep over the fitness barriers which are imposed
by the fitness landscape as good as PSO. Both explanations
will be further investigated in future work, for example by
using different scoring functions. If the latter explanation
turns out to be true, a hybrid approach in which SO is
used to sample the search space and BNSO acts more as
a fine-tuning mechanism, might yield an algorithm of truly
improved performance.

6. CONCLUSIONS

This article introduced Bee Nest-Site optimization (BNSO)
as a novel bio-inspired optimization principle based on the
nest-site selection behaviour of honeybees. As shown in a
previous study [2] the mechanism underlying nest-site selec-
tion can be useful in the context of optimization. Here an ab-
straction of the biological mechanism was outlined that can
be applied in the domain of function optimization. The cor-
responding BNSO algorithm called Bee-Nest was tested in
the domain of protein docking and its performance was com-
pared to three reference algorithms (PSO, RHC, RNDM)
that have been previously used in this problem domain.

Molecular docking was chosen as a test problem as it
constitutes a challenging real-life optimization problem of
high importance in the fields of bioinformatics and biochem-
istry. The BNSO algorithm Bee-Nest was tested on the
the PDBbind core-set [20] using ParaDocks [13], a docking
framework developed for the application of population-based
metaheuristics. The solutions obtained from Bee-Nest and
the reference algorithms PSO, RNDM, and RHC were com-
pared in terms of lowest energies, energy distribution, and
RMSD to the reference solution.

With regards to the energy levels reached by optimiz-
ing with the BNSO, this algorithm’s performance is very
promising. In comparison to the three reference algorithms
the BNSO algorithm Bee-Nest is able to generate receptor-
ligand conformations with the lowest energy levels for the
majority of the test instances. This trend is also reflected
in the mean and median energy levels of the protein confor-
mations the algorithms generated for the test instances.

RMSD values of the generated conformations constitute
a measurement to estimate how close the produced confor-
mations resemble the conformation found in wet lab experi-
ments. Surprisingly, the RSMD values of the conformations
produced by the BNSO are not as accurate as their energy
levels would suggest. In terms of RSMD values, the tested
PSO algorithm outperforms the BNSO. Around 46% of the
conformations produced by the PSO are in a range of 2.5A to
the real protein conformation, while this only holds for 36%
of the conformations produced by the BNSO, even though



many of them exhibit a lower energy value according to the
scoring function. There are two potential explanations for
this quality difference of the conformations produced by the
Bee-Nest. One is that this might be due to the used scoring
functions, thus tests with different scoring functions should
be employed to see if the difference remains. Another po-
tential explanation is that the BNSO algorithm Bee-Nest
has problems overcoming the vast fitness barriers imposed
by the molecular docking fitness landscapes. Lower energy
values would then be the result of the Bee-Nest’s superiority
in fine tuning the protein conformations regarding its sur-
rounding. If this is the case, a hybrid approach where the
PSO is applied as a means of search space sampling and the
BNSO algorithm functions as a post-processing algorithm
might yield a very good performance if applied to molecular
docking.
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