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Abstract

Specific interactions between cations and proteins have a strong impact on peptide and

protein structure. We here shed light on the nature of the underlying interactions, especially

regarding the effects on the polyamide backbone structure. To do so, we compare the con-

formational ensembles of model peptides in isolation and in the presence of either Li+ or

Na+ cations by state-of-the-art density-functional theory (including van der Waals effects) and

gas-phase infrared spectroscopy. These monovalent cations have a drastic effect on the local

backbone conformation of turn-forming peptides, by disruption of the H bonding networks and

the resulting severe distortion of the backbone conformations. In fact, Li+ and Na+ can even

have different conformational effects on the same peptide. We also assess the predictive power

of current approximate density functionals for peptide-cation systems and compare to results

from established protein force fields as well as to high-level quantum chemistry (CCSD(T)).
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Introduction

As early as 1912, Paul Pfeiffer systematically studied the crystallization of short Ala and Gly

containing peptides from aqueous solution in the presence of alkali salts1 and postulated that Li+

exhibits a higher affinity (“Additionsfähigkeit”) to peptides than Na+ and K+.2 Indeed, calorimetric

studies revealed high interaction enthalpies of a series of peptides with Li+,3 in the range of solva-

tion enthalpies of peptides. These strong interactions are in practice used to increase the share of

cis prolyl peptide bonds from 10% to 70% upon addition of Li+-salts in biochemical assays of the

activity of peptidyl prolyl cis-trans isomerases.4 NMR studies of the cyclic peptide Cyclosporin

A (CysA) in organic solvents revealed that Li+ inhibits the formation of H bonds and induces

’unusual’ backbone conformations.5,6 100 years after Pfeiffer’s work, Garand et al.7 studied the

non-covalent interactions of a non-natural peptide-based catalyst by means of gas-phase infrared

(IR) spectroscopy. While the polyamide backbone of the molecule forms intramolecular H bonds

if protonated, sodiation apparently results in a complete absence of H bonds due to the involvement

of the carbonyl groups in interactions with the Na+ cation. Both CysA5,6 and the peptide-based

catalyst7 form narrow turn-like backbone loops, well suited to accommodate a cation. Such turns

are normally at the outside of globular proteins, exposed to the surrounding medium. We here in-

vestigate the atomistic and electronic basis of cation peptide interactions in turn-forming peptides.

The focus is on proline-containing peptides, where pronounced conformational effects of such in-

teractions can be expected due to the possible cis and trans states of the prolyl-peptide bond.8

Our study is based on accurate conformational predictions by first-principles (density-functional

theory) in a synergistic combination with gas-phase IR spectroscopy to validate the results.

Structure formation and dynamics in proteins can be primarily attributed to the rotation of the

N–Cα and Cα–C single bonds, represented by the backbone torsion angles φ and ψ , respectively

(Figure 1A). This conformational φ /ψ space is well described by a Ramachandran diagram9 like

the statistical evaluation of high-resolution X-ray data10 shown in Figure 1B. The blue shaded

areas are referred to as allowed conformational regions and can be associated with characteristic

secondary structure types (Figure 1B).
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The double bond character of the peptide bond hinders free rotation and allows for two distinct

conformations. In general, the trans conformation with an apparently high barrier to cis is almost

exclusively observed.11,12 A significant fraction of cis conformation is only observed for the prolyl-

peptide bond.13 In proline, cis and trans (Figure 1C) are close in energy since the Cβ of the

preceding building block encounters a carbon atom of proline (Cα or Cδ ) in both states. A cis

peptide bond, usually preceding a proline building block, is a feature of so-called type βV I turns

(Figure 1D).14,15 This notation dates back to Venkatachalam, according to which β -turns share

the feature of an H-bond between residues i+ 3→ i and are further classified by the backbone

torsion angles φ and ψ of the residues i+1 and i+2.16 The β turns of the protein backbone allow

for a 180◦ reversal of the direction of structure propagation within four consecutive residues of a

polypeptide chain. Similarly, Hutchinson and Thornton classify β -turns according to ranges for

the backbone torsion angles φ and ψ into eight well-defined classes (I, I′, II, II′, V Ia1, V Ia2, V Ib,

and V III) and a miscellaneous type IV .17,18 Very prominent are the common (type I) and Glycine

(type II) turn and their inverse counterparts I′ and II′. The special β -turn types V Ia and V Ib have a

cis peptide bond between central residues i+1 and i+2; they frequently feature proline in position

i+2.14 Idealized backbone torsion angles for these turn types can be found, e.g., in reference 15.

In this study, we make use of the characteristic of proline-containing peptides to allow for

the formation of cis and trans peptide bonds as a potential strong “conformational signal“ trig-

gered by the peptide cation interaction. Indeed, Seebach and co-workers reported ion-induced

conformational effects on peptide structure to be especially pronounced in the proximity of pro-

line.8 Kunz et al. investigated a systematic series of proline-containing peptides with NMR and

find peptides containing an Asp-Pro sequence to exhibit a cis/trans ratio that is in opposition to

the results of all other sequences studied.19 Therefore, we here investigate the sequence AXPA

(Figure 1D), where P is the single letter code for proline and X is either alanine (A) or aspar-

tate (D), allowing us to differentiate between pure cation backbone interaction and the additional

effect of cation sidechain interactions on the peptide backbone conformation. The peptide de-

sign in the present work avoids structure-perturbing labels and protects the termini with acetyl
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Figure 1: The backbone torsion angles φ and ψ (A) of the residues of a polypeptide chain can be
illustrated by a Ramachandran plot (B), based on data from reference.10 Labels highlight charac-
teristic secondary structure types: The β region in the 2nd quadrant, the 310 and α helical region
in the 3rd quadrant as well as left-handed α and the β II’ region in the 1st and 4th quadrant,
respectively. The cis and trans state of the prolyl-peptide bond (C) has a drastic effect on polypep-
tide structure, which we study with the model peptides AAPA and ADPA (D), here shown in a
schematic βV I-turn conformation.
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and aminomethyl groups (Figure 1D) to embed the sequence in a ’protein-like’ chain structure,

avoiding endgroup effects, i.e., zwitterion formation.

Results and discussion

We combine an exhaustive conformational search from first principles with theoretical and exper-

imental gas-phase IR spectroscopy. Such investigations of isolated peptides in the gas phase offer

an unbiased view of structure formation trends intrinsic to the molecule, a successful strategy for

charged and uncharged amino acids and peptides.20–30 By the stepwise addition of perturbing con-

tributions, in this case cations, we aim to reconstruct the main contributions to protein secondary

structure formation in a bottom-up approach. The success of such an approach is critically linked

to the quality of the description of the potential-energy surface of the system under investigation.

We employ density-functional theory (DFT) in the generalized-gradient approximation with the

Perdew-Burke-Ernzerhof (PBE) functional.31 Van der Waals dispersion interactions are included

through a pairwise C6R−6 term for which C6 coefficients are derived from the self-consistent elec-

tron density, referred to as PBE+vdW.32 Our use of rather accurate, but computational efficient

approximate DFT is justified by the high-level benchmarks we present in the methods section of

this article.

Conformational analysis

The theoretical conformational analysis of the short peptide AAPA (Figure 1D) is already challeng-

ing. Hypothetically, discretizing the backbone torsion angles with a 30 degree grid and assuming

two possible states (cis and trans) for the peptide bonds would formally result in roughly 35 mil-

lion conformations to evaluate. In order to tackle this massive conformational space, we resort to

a basin hopping-like exhaustive search of the potential-energy surfaces (PES) of conventional pro-

tein force fields (OPLS-AA33 or AMBER9934). We employ the TINKER 5 scan routine35 in an

in-house parallelized version. In order to achieve a reliable and parameter-free description, we then
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follow up with a large set (700 to 1800 per peptide-cation system) of PBE+vdW post-relaxation

calculations as a second computational step.

Figure 2 shows our results for AAPA in isolation. The lowest-energy structure of the PES,

a βV I turn with a cis prolyl peptide bond, also has the lowest free energy in the harmonic ap-

proximation. Two alternative βV I turns are 4.5 and 8.3 kJ/mol higher in ∆F300K . The most stable

conformer with a trans peptide bond is a β II’ turn with ∆E=2.8 kJ/mol. Harmonic free energy

contributions add a further penalty to the structure, yielding ∆F300K=8.8 kJ/mol. In these cases, the

maximum number of four backbone H bonds is formed. In a DFT study of Ac-Ala-Pro-NMe, Byun

et al. also predicted a βV I-turn as the most stable conformer in the gas phase.36 A comparable

β II’ turn was not among the lowest-energy conformers of this shorter peptide. The lowest minima

of the PES of ADPA (up to 0.7 kJ/mol) are again βV I turns (Figure 3), followed by two alternative

conformers with relative potential energies of 2 and 4 kJ/mol, respectively. In the latter, the Asp

sidechain forms H bonds to the NH and C−−O groups of residue Ala4, resembling the shape of a

β -turn, hence the naming as SC-β . For the ADPA-cation systems, we confirmed by mass spec-

trometry (for the ADPA-cation systems) that the Asp sidechain is protonated in our experimental

setup. Consequently, the Asp sidechain is modeled in the protonated neutral state. Harmonic free

energy contributions make SC-β the preferred structure type by roughly 2 kJ/mol. Notably, the

lowest free energy structure of AAPA features a cis prolyl-peptide bond, while the respective bond

in the lowest free energy structure of ADPA is trans configured (Figures 2 and 3).

The attraction between backbone carbonyl groups and the Li+ or Na+ cations induces struc-

tures that differ substantially from the conformers without cations: The H bonding networks in the

low energy conformers are disrupted (Figures 2 and 3) and the backbone conformations deviate

from the isolated case. This is in line with the above mentioned results for CysA in apolar Li

salt solutions5,6 and the sodiated peptide-based catalyst in the gas phase.7 For the isolated pep-

tides AAPA and ADPA, the backbone torsion angles φ and ψ of the low free energy conformers

(∆F300K < 6 kJ/mol) are within the allowed regions of the Ramachandran plot (Figure 4). The sin-

gle outlier for ADPA in the fourth quadrant represents the C terminal residue Ala4 of a conformer
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Figure 2: By an exhaustive conformational search we predicted the low free energy ensembles for AAPA in isolation
and in the presence of Li+ and Na+. The criterion applied to select the structures shown is lowest free energy, except
for conformer 0-1-2-4(II) which was selected for its relation to 0-1-2-4(I): both conformers can be interconverted by
a backbone crankshaft movement. It is noteworthy how potential energy (∆E, in kJ/mol) and harmonic free energy
(∆F300K , in kJ/mol) hierarchies differ for the peptide ion complexes. The preference for cis (red background) and trans
(blue background) depends on the cation complexated by AAPA. The simulated IR spectra are shown as continuous
lines for the individual conformers as well as for the assumed ensemble of conformers (lowest row), always in com-
parison to the experimental IR spectra in dashed lines. The tables show the relative proportion of each conformer
within the respective mixed simulated spectra. Simulated spectra were shifted along the energy axis by a value ∆ for
an optimal Pendry reliability factor RP. The atom colors: C is gray, N is blue, O is red, H is white, Li is green, and Na
is orange. Hydrogens are only shown if part of H bonds. 7



Figure 3: Low free energy conformers for peptide ADPA in isolation and in the presence of Li+ and Na+. Potential
energy (∆E, in kJ/mol) and harmonic free energy (∆F300K , in kJ/mol) are given. The prolyl peptide bond of the re-
spective lowest free energy conformer is trans (blue background) for all three cases. The conformational ensembles of
ADPA with Li+ or Na+ are very similar, which is also indicated by the similarity of the experimental IR spectra (dashed
lines). Bottom: The simulated spectra (continuous lines) were mixed to account for a conformational ensemble, the
tables show the relative proportion of the conformers within the mixed spectra. Simulated spectra were shifted by a
value ∆ along the energy axis for an optimal Pendry reliability factor RP. The atom colors: C is gray, N is blue, O is
red, H is white, Li is green, and Na is orange. Hydrogens are only shown if part of H bonds.
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with ∆F300K = 4.8 kJ/mol. The different possible rotameric states of the Asp sidechain prefer

different backbone conformations. This results in more possible backbone conformations (data

points) compared to AAPA. The cation-peptide interaction imprints φ /ψ combinations (backbone

conformations) that substantially differ from those of the unperturbed peptides. Some of them with

still low relative free energy (0.9 kJ/mol for AAPA + Li+ to 2.6 kJ/mol for AAPA + Na+) are even

located outside of the allowed regions of the Ramachandran plot (Figure 4). These outliers are not

at the termini but in the central residues Ala2 or Asp2, which govern the overall structure of the

peptides. Interestingly, also the cation effects on the two peptides differ. It becomes obvious that

the conformational ensembles of AAPA with Li+ and Na+, respectively, differ (Figures 2 and 4),

while for lithiated or sodiated ADPA the possible conformations seem very similar (Figures 3 and

4).

A canonical turn structure, type β II’ (not shown), is the lowest PES minimum of AAPA+Li+.

The second most stable minimum, with ∆E= 0.2 kJ/mol, is a α-turn (Figure 2). Here, the con-

sideration of harmonic free energy contributions changes the picture dramatically and ’unusual’

backbone conformations become dominant. In the lowest free energy conformer, the Li+ cation

is coordinated by three backbone carbonyl groups of residues 0, 2, and 4 (Figure 2). We base

the naming of the conformers on the peptide cation interaction by using the numbers of the inter-

acting oxygens, e.g. 0-2-4. In case of multiple conformations with the same interaction pattern,

they are distinguished with roman numerals, increasing with the free energy of the conformers.

Up to four out of five possible binding partners (backbone carbonyl groups) are sterically possi-

ble (conformers 0-1-2-4 with ∆F300K=0.9 or 2.2 kJ/mol). Although the search for minima does

not yield information on the actual barriers connecting different conformers, their high structural

similarity suggests dynamic interconversion at finite temperature. For AAPA+Li+, the preferred

conformation of the prolyl-peptide bond changes from cis to trans.

Na+ binding to AAPA results in a similar behavior: Canonical structure types (βV I, β II’,

α) are lowest in potential energy while structures with ’unusual’ backbone conformations and

carbonyl groups pointing towards Na+ are most stable when harmonic free energy contributions
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are considered. However, there are substantial differences to the Li+ adducts: the low free energy

ensemble is more diverse and the central peptide bond of the lowest free energy conformer 0-

1-3-4 is cis. In the case of AAPA + Na+ (Figure 2), we do not show just the four lowest free-

energy conformers (see Table 3 of the Supporting Information for all calculated free energies).

The second lowest free energy conformer, A1661 (∆F300K=2.6 kJ/mol), was excluded since it was

proven unstable in the subsequent AIMD simulations for IR spectra (see section below). Instead

we consider 0-1-2-4(II) as fourth conformer, which is much higher in free energy. Interestingly,

these two conformers of AAPA+Na+, 0-1-2-4(I) and 0-1-2-4(II), are almost identical besides the

orientation peptide bond between Pro3 and Ala4 (Figure 2). This peptide bond is not involved in

any interactions and can thus rotate by a concerted motion of the adjacent torsion angles ψ and

φ , a so-called backbone crankshaft rotation.37,38 During the equilibration AIMD simulations at

300 K (in preparation of the simulations to obtain IR spectra), this interconversion from 0-1-2-4(I)

to 0-1-2-4(II) was indeed observed within the 10 ps simulation time. The subsequent evaluation of

IR spectra also suggests the presence of 0-1-2-4(II) in the experimentally observed conformational

ensemble.

In ADPA, the dominant interaction pattern is the complexation of Li+ or Na+ by the backbone

oxygens 0, 2, 4 and the Asp sidechain carboxyl group. All conformers in the low energy range

are highly similar and feature no cis prolyl peptide bonds (Figure 3). As discussed above on the

basis of the Ramachandran plot (Figure 4), the effects of the cations on AAPA and ADPA differ.

Li+ enforces a trans conformation on the prolyl peptide bond of AAPA while Na+ enforces the cis

conformation (Figure 2). For ADPA, no such selectivity for the cation is observed. With Li+ or

Na+ attached, similar structure types with trans prolyl peptide bonds are preferred (Figures 3 and

4).

Infrared spectroscopy

In order to corroborate our structural findings, we obtained gas-phase infrared multi-photon disso-

ciation (IRMPD) spectra, which reflect the same clean-room conditions as used in our simulations.
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Figure 4: The backbone torsion angles φ and ψ of the low free energy conformers (∆F300K <
6 kJ/mol) for AAPA and ADPA in isolation (gray squares), with Li+ (green triangles), and with Na+

(orange triangles) were plotted on top of an empiric contour plot.10 Addition of cations disturbs the
backbone conformations and even results in usually forbidden φ /ψ . The backbone conformation
of AAPA is sensitive to the type of cation, as illustrated by the differing torsion angle patterns with
Li+ and Na+.
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Spectra were recorded from 1000 to 1800 cm−1 at the free electron laser facility FELIX39 using a

Fourier-transform ion cyclotron (FT-ICR) mass spectrometer.40 The experimentally obtained spec-

tra for lithiated and sodiated AAPA and ADPA are shown in Figure 2 and Figure 3. For AAPA

significantly different spectral signatures where obtained for the Li+ and Na+ complexed forms,

which is in line with the results of the coformational analysis described in the previous section.

For ADPA on the other hand very similar spectra were recorded with both cations.

In order to allow for a quantitative theory-experiment comparison, IR spectra including an-

harmonic effects were computed from Born-Oppenheimer ab initio molecular dynamics (AIMD)

simulations. The systems were equilibrated by 10 ps of AIMD simulations at 300 K. Subsequently,

the micro-canonical ensemble was sampled in up to 40 ps long AIMD simulations at constant

energy from which IR spectra were derived.27,41 IR spectra of polyamides feature characteristic

bands of high intensity (like the amide I and II region, 1400 - 1700 cm−1) but also regions with low

intensity (below 1400 cm−1) and fingerprint characteristics. Visual inspection does not allow for

a quantitative assessment and is, similar to a simple square of intensity comparison, easily biased

by the high intensity peaks. For a quantitative comparison between the calculated and experimen-

tal spectra, we employ the reliability factor RP introduced by Pendry42 to the field of low-energy

electron diffraction, in an implementation distributed with reference43. For RP, peak positions are

more important than peak intensities – a characteristic that fits the requirements we face here, espe-

cially as we compare experimental action spectra and theoretical absorption spectra. Values for RP

range from 0 (perfect agreement) to 1 (no correlation). Intensities of the spectra were normalized

to 1 and rigidly shifted (not scaled) with a value ∆ along the energy axis to account for deviations

likely due to a systematic mode-softening by the density functional we use.27,44 When comparing

the calculated IR spectra of single conformations to the experimental IR spectra we observe only

modest agreement (see individual spectra in Figures 2 and 3). Previous studies have shown similar

behavior due to conformational ensembles for peptides in the gas-phase at finite temperature.22–27

Furthermore, the energy differences of the low free-energy conformers lie within the uncertainty

of the employed method, as discussed in the benchmarks section above. Consequently, an ensem-
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ble of conformations is assumed. By mixing the individual theoretical spectra in 5% steps, the

RP to the respective experimental spectrum is optimized. This results in a much better agreement

of simulated and experimental spectra of the peptides AAPA and ADPA in complex with single

Li+ or Na+ cations (Figures 2 and 3). For the predicted spectra of AAPA + Li+ and for ADPA

+ Li+ or Na+, especially the reproduction of the fine structure below 1400 cm−1 wavenumbers is

gratifying. We note for completeness that the spectra for the protonated peptides (not shown) are

rather different in appearance, suggesting very different structural effects compared to the heavier

cations.

In a naive way, a correlation between the free energy estimates at the harmonic approximation

and the abundances of the individual spectra in the resulting mixed spectrum could be expected.

However, this would be too much to expect for several reasons:

• The PBE+vdW method we use is rather accurate as illustrated by the benchmark calculation

presented in the methodology section of this article, however, the systems under investigation

here are also large (56 to 60 atoms). The lowest free-energy minima we discuss here are still

within the possible uncertainties of the relative (free) energies.

• The experimental data base to which we are comparing mixes of theoretical spectra is, sim-

ply, small - and fitting many parameters to a small data set has well known limitations.42

What these mixes offer is, therefore, strictly only a consistency check. The spectra of just a

single conformer are not sufficient to explain the observed IR spectra. In contrast, confor-

mational mixes yield a much more consistent description of the spectra, in line with several

conformers of similar free energy. This is the primary quantitative statement that we can

derive from the experiment-theory comparison.

• The free energy model neglects anharmonicity as well as the entropic effects of a possibly

greater accessible conformational space (dynamical interconversion in the case of low bar-

riers) of specific conformers. That the latter can be of special importance is illustrated by

the crankshaft rotation discussed above for the two conformers 0-1-2-4(I) and 0-1-2-4(II)
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of AAPA + Na+. The fact that both conformers can interconvert shows the extent to which

the anharmonic nature of the potential-energy surface can play a role. In fact, in the com-

bination of the four individual spectra that shows the best agreement with the experimental

spectrum (Figure 2), 0-1-2-4(II) is predominant with 45%. Again, conformer 0-1-2-4(II)

is structurally and dynamically closely related to the 0-1-2-4(I) conformer with the lowest

harmonic free energy. This illustrates the limits of the harmonic free energy assignment to

potential energy minima at room temperature, where such conformational and dynamical

effects are neglected. It furthermore illustrates the limitations of the interpretation of IR

spectra as a combination of individual and isolated conformers.

Concluding this section we can say that, on the one hand, the accuracy of the harmonic approx-

imation to the free energy is limited by the dynamic character of such molecular systems at finite T.

On the other, the IRMPD spectroscopy setup we use here is limited in its resolution, especially re-

garding the separation of individual conformers. However, we can unambiguously predict minima

by first-principles theory and validate the results by room temperature IR spectroscopy (keeping

the differences of static harmonic free-energy minima and actual room temperature molecules in

mind). The observed cation-peptide effects were certainly qualitatively corroborated by both ap-

proaches.

Micro solvation of a peptide cation complex

Already in the introduction we mention the presence of turn-sequences mainly at the surface of

proteins, exposed to the aqueous environment. With this section we want to give at least a qualita-

tive picture of how the interaction between the peptide backbone and the cation can compete with

solvation of the cation. AIMD simulations have been performed for AAPA+Li+ alone and with a

few water molecules. For the setup of the latter system, 18 molecules were accommodated within

a sphere of 4.5 Å radius around the Li+ cation. For comparison, Li+ embedded in 4 and 10 water

molecules, respectively, was also studied. We characterize the interaction between the Li+ cation

and the respective oxygens of the peptide backbone or of first solvation shell water molecules by
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the Li+-O distance and by the O-Li+-O angle, shown in Figure 5. Previous ab initio studies predict

a coordination number of 4 for Li+ in water.23,45,46 Consistently, the cation is complexed by 4

backbone carbonyl groups in our example conformer 0-1-2-4(I). During a 100 ps AIMD trajectory

at 330 K (Nosé-Hoover thermostat), the Li+-O distance fluctuates around 1.9 Å, the O-Li+-O angle

distribution is broad, indicating the non-ideal tetrahedron formed by the interacting carbonyl oxy-

gens. The microsolvation of AAPA + Li+ in 18 water molecules results in a slight change of the

binding site within a few picoseconds: a water oxygen substitutes for the interaction to backbone

C−−O of Ala1. The cation interacts with the three backbone carbonyl oxygens of AAPA and the

same water molecule (Figure 5) for the whole 90 ps of remaining AIMD simulation time. As a

result, a virtually ideal binding site is formed, characterized by an almost symmetric distribution

of the O-Li+-O angle around the ideal tetrahedral angle of 109.5◦. For Li+ immersed in a small

water cluster (4 or 10 water molecules, respectively), the Li+-O distance distribution peaks around

2.0 Å. Remarkably, the distribution of the tetrahedron angles O-Li+-O is multimodal again, ac-

counting for alternative (and less populated) geometries of the Li+ complexation involving 3 or,

in the case of the 10 water with Li+ cluster, even 5 water molecules in the first solvation shell.

For now, we can at least qualitatively say that AAPA is able to form an ideal interaction shell that

seems competitive to water solvation. A fully correct answer could be given on the basis of free

energy differences from simulations with fully solvated systems. Such simulations are standard

for force field approaches, yet they are computationally very demanding at the level of theory we

employ here. A rigorous assessment is thus beyond the scope of this manuscript.

Conclusion

Starting from the isolated peptides that adopt either canonical turn structures (AAPA) or turn-

like conformations with sidechain to backbone H bonds (ADPA), we show the drastic effect of

cations on the local secondary structure of peptides: the cation attracts most of the backbone

carbonyl groups and, as a result, completely breaks the local H bonding network. This leads to

distortions of the peptide backbone and results in conformations with backbone torsion angles
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Figure 5: The first solvation shell around a Li+ cation. Interactions are formed between between
the oxygens of water molecules (purple) or backbone carbonyl groups (red). The histograms were
derived from AIMD simulation of different length (20 to 100 ps) and the counts were normalized
to 1.

16



φ and ψ that are in part outside of the allowed regions of the Ramachandran plot (Figure 4).

Consequently the question of the range of such ion-induced disruptions arises. Ohanessian and co-

workers studied47,48 poly-glycines with a chain length of 2 to 8 in complex with Na+ by simulation

and gas-phase IR spectroscopy: Up to a sequence of 7 glycine residues the contact number between

the cation and backbone C−−O groups is maximized and no H bonding was observed. With the

Gly8 peptide, backbone H bonding appeared again in form of γ- and β - turns. Glycine, due to

the lack of a sidechain, represents a very special case among the canonical amino acids. As a

contrast, the helical secondary structure of sodiated polyalanine (8-12) is not broken in the gas

phase. Here, the Na+ ion is attached to the C terminus.49,50 The importance of considering the

effect of sidechain functionalities is highlighted by the sequence dependence of the cation effects

we observe. The conformational preferences of AAPA with Li+ or Na+ differ drastically by the

trans or cis state of the central prolyl peptide bond. Noskov and Roux investigated the selectivity

of the ion-coupled transporter LeuT. Two Na+ binding sites (NA1 and NA2) show differences in

the Li+/Na+ selectivity: NA1 appears to be rather flexible and exhibits no selectivity for one cation

over the other as it adapts to the different ionic radii. For NA2, a slight selectivity is apparently

induced by a ”snug-fit“ mechanism (the rigid NA2 interaction site is unable to adapt to different

ionic radii).51 Similarly, the lowest free-energy structure 0-1-3-4 of AAPA+Na+ may be to rigid to

adapt to the Li+ cation, since only backbone carbonyl functions can be involved in the interaction.

With ADPA, the Asp sidechain prevents such conformation selectivity.

Our findings might even help to understand a basic biochemical principle: In 1888, Hofmeister

published an article52 that laid the basis for a sorting of cations and anions according to their effect

on the solubility of biomolecules, colloids, and functional polymers. While it was believed that

the underlying effects can be explained solely by bulk properties stemming from the solvent ion

interactions,53 evidence was found that most effects of ions on water structure are limited to the

first solvation shell54 and that specific ion-solute interactions can be expected to contribute sub-

stantially.55 This gets especially clear at high salt concentrations as investigated by Dzubiella and

co-workers employing classical MD simulations56–58 and later also experimental approaches.59
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They demonstrate that the perturbing effect of ions on peptide structure results from the breaking

secondary structure specific H bonds in the backbone. Our own findings point into a similar di-

rection, as we have shown here how cations can substantially change the backbone structure of a

(bio)polymer. These interactions are not necessarily stable over a very long time range, but our

exploratory AIMD simulations suggest time ranges at least in the tens to hundreds picoseconds.

Dzubiella describes long-lived loop conformations that are stable over 10 to 20 ns in classical MD

trajectories.56 Similar to the specific interactions between anions and the amide bond containing

polymers of N-isopropylacrylamide described by Cremer and co-workers,60 we show here the pos-

sible interactions between small mono-valent cations and peptides and highlight their significant

effect on local peptide structure. Such should be considered as one driver behind the Hofmeister

salt effects on proteins.

Computational methods

Scans of the PES were peformed with a basin hopping-like exhaustive search and conventional

protein force fields (OPLS-AA33 or AMBER9934). We employ the TINKER 5 scan routine35 in

an in-house parallelized version. The required methods to perform DFT-based simulations, includ-

ing geometry optimization, computation of harmonic vibrations, and ab initio Born-Oppenheimer

molecular dynamics (AIMD), are incorporated in the FHI-aims code, which provides an efficient

and accurate all-electron description based on numeric atom-centered orbitals.61 In the following

we discuss fully relaxed conformations at the PBE+vdW level and their relative potential energies

(∆E) and relative harmonic free energies at 300K (∆F300K), all computed with tight convergence

settings and an accurate tier 2 basis set.61 High-level quantum chemical benchmark calculations,

i.e. relaxations at the MP2 level of theory and coupled-cluster calculations with singles, dou-

bles and perturbative triples (CCSD(T)), were performed with the ORCA quantum chemistry pro-

gram,62 CCSD(T) energies extrapolated to the complete basis set limit (CBS) were obtained by a

method described by Truhlar,63 employing the Dunning basis sets cc-pVDZ and cc-pVTZ.64
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Benchmarks

We assessed the predictive power of the DFT approximations applied here by benchmarks in two

directions with respect to the approximation level: We compare to high-level quantum chemistry

at the CCSD(T) level of theory extrapolated to the complete basis-set limit. On the other hand,

we assess the quality of the force field description of cation-peptide interactions in comparison to

approximate DFT at the PBE+vdW and PBE0+vdW levels.

Comparing electronic structure theory methods

There have been several assessments of the accuracy of the PBE+vdW level of theory applied to a

variety of systems, e.g., peptides,65 weakly bound metal-phtalocyanine systems,66 and ionic and

semiconductor solids.67 A previous assessment of the accuracy of PBE+vdW for peptide systems,

for the conformational energy hierarchy of Ace-Ala-NMe and Ace-Ala3-NMe, shows mean abso-

lute errors (MAE) below 2 kJ/mol in comparison to CCSD(T) energies.65 We here investigate metal

cation-peptide systems and thus re-assess the accuracy of our DFT-based predictions. We employ

high-level quantum chemical theory on the conformational energy hierarchy of Ac-Ala-NMe+Li+.

A conformational analysis identified five local minima (Figure 6) within a potential energy range

of 35 kJ/mol at the MP2/cc-pVTZ level of theory.64,68 The cation closes a 7-membered pseudo-

cycle via interaction with the oxygens of the backbone carbonyl groups. The orientation of the

methyl groups relative to the pseudo-ring plane defines them as either equatorial (Figure 6: 1, 3, 5)

or axial (Figure 6: 2, 4). In addition, an important characteristic of our actual systems of interest

(AAPA and ADPA) is present here as well: in the lower energy conformers 1 and 2 the C-terminal

peptide bond is trans configured, in contrast to the other conformers with a C terminal cis peptide

bond.

Relative energies at the CCSD(T), PBE+vdW, and PBE0+vdW level of theory were compared

by estimating the mean absolute error (MAE = 1
n ∑

n
i=1 | fi− yi|). As an additional method, we also

include the frequently-used B3LYP method (no vdW correction). For much larger systems, the

missing description of dispersion effects represents a deficiency in the description of conforma-
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Figure 6: Lowest energy conformers of Ace-Ala-NHMe + Li+, fully relaxed at the MP2/cc-pVTZ
level of ab initio theory. Hydrogens were omitted for clarity; dashed black lines illustrate the
oxygen lithium interactions.
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tional energy hierarchies. The DFT methods give low uncertainties (see Table 1), well within the

often stressed ”chemical accuracy“ of 1 kcal/mol (4.2 kJ/mol). The conformational changes upon

relaxation with DFT are negligible, as indicated by the low maximal RMSD value of 0.38 Å (Ta-

ble 1). We note that only small contributions of the van der Waals correction can be expected for

molecular systems of this size. Of the tested DFT approaches, PBE0+vdW gives the best agree-

ment with the benchmark calculations, as it is obvious from the MAE and the average RMSD (see

Table 1). However, for a large-scale conformational screening and the extensive molecular dynam-

ics simulations we undertake in this study, PBE+vdW perfectly balances computational costs and

accuracy.

Table 1: Relative energies and RMSD values of the conformers depicted in Figure Figure 6. Left
columns: CCSD(T), PBE+vdW, PBE0+vdW, and B3LYP relative energies were calculated for
MP2/cc-pVTZ geometries. The MAE of the DFT relative energy hierarchies to CCSD(T) is also
given. Right columns: the conformers were also relaxed with the respective DFT methods. With
respect to the MP2 geometries, RMSD values for the individual conformers and average RMSD
values are given. Relative energies and the mean absolute errors (MAE) are given in kJ/mol;
RMSD values are given in Å.

∆E (MP2 geometries) RMSD to MP2
Conf. CCSD(T) PBE+vdW PBE0+vdW B3LYP PBE+vdW PBE0+vdW B3LYP
1 0.0 0.0 0.0 0.0 0.03 0.03 0.03
2 6.7 4.4 5.0 5.7 0.03 0.03 0.03
3 20.2 17.1 18.2 22.3 0.38 0.16 0.33
4 23.1 22.0 23.1 27.1 0.12 0.08 0.18
5 33.8 34.2 34.8 38.0 0.04 0.02 0.04
MAE/RMSD 1.4 0.9 2.3 0.12 0.06 0.12

Standard protein force fields versus electronic structure theory

When comparing the results of different standard protein force fields among each other and to

DFT, we observe dramatic discrepancies in the conformational hierarchies. Such force fields were

parametrized for the solvated state, while we perform our assessment in the gas-phase. Nonethe-

less, they are frequently used also for conformational investigations irrespective of the environ-

ment. Consequently, their performance in vacuo is of interest. We employ as a reference the

conformational energy hierarchy of AAPA+Li+ at the PBE+vdW level. In line with the results of
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the above comparison, PBE31 and the hybrid density functional PBE069 (both vdW corrected32)

give very similar results, illustrated by the low MAE values in Table 2. The widely used protein

force fields Amber99,34 Charmm22,70 and OPLS-AA33 give MAE that are at least about 20 times

larger. The MAE values are summarized in Table 2. The relative energies can be found in the

Supporting Information. A main characteristic of the system is apparently the cation peptide in-

teraction. The effect on the partial charges appears to be better described by the polarizable FF

Amoeba,71 illustrated by a MAE of about 10 kJ/mol. Interestingly, the removal of the cation leads

to still large MAE values (cf. Table 2), but the energy hierarchies themselves appear more consis-

tent in the different methods. This can be seen when comparing the two plots (with and without

Li+) in Figure 7. The calculations (single point) were repeated for the same AAPA conformers

(fixed geometries) but without the cation. The MAEs to the force field approaches are consistently

much larger than between the DFT techniques, with significant errors especially also in the en-

ergetic hierarchy of the conformers. Apparently, the large errors of the force fields can mainly

be attributed to the ill-described cation-peptide interaction. In short, DFT based approaches for

cation-peptide systems appear to be vastly preferable at least over the standard force field-based

approaches tested here.

Table 2: MAE, w.r.t. the PBE+vdW hierarchy, of the energy hierarchies computed with
PBE0+vdW, PBE, PBE0, Amoeba,71 Amber99,34 Charmm22,70 and OPLS,33 for the fixed ge-
ometries with and without the Li+ cation (energies in kJ/mol). The relative energies can be found
in Table 1 and 2 of the Supporting Information.

PBE0+vdW PBE PBE0 Amoeba Amber99 Charmm22 OPLS-AA
Fixed AAPA+Li+ geometries

MAE 1.0 10.0 9.9 9.6 18.7 26.1 35.2
Same geometries, fixed without Li+

MAE 1.3 6.7 6.7 11.6 19.5 31.8 16.5
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Figure 7: The relative energies of 21 AAPA+Li+ conformers with a relative potential energy below
10 kJ/mol at the PBE+vdW level were re-calculated with PBE0+vdW, Amoeba,71 Amber99,34

Charmm22,70 and OPLS,33 for the fixed geometries with and without the Li+ cation. The resulting
mean average errors (MAE, in kJ/mol) are small between the two DFT methods. The plots show the
conformational energy hierarchies for each conformer in PBE+vdW (x-axis) and each respective
alternative method. Note the different scale of the x-axis in both plots. The hypothetical perfect
correlation is indicated by the straight lines, but all force fields deviate significantly even for the
qualitative energetics.
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Experimental methods

Synthesis

Peptides were synthesized by solid phase assembly using a Multi-Syntech Syro XP peptide syn-

thesizer (MultisynTech GmbH, Witten, Germany) by Fmoc strategy on Fmoc-Ala-OWang resin

(0.5 mmol/g). The peptides were cleaved from the resin by reaction with 2 ml of a solution contain-

ing 10% (w/v) triisopropylsilane, 1% (w/v) water, and 89% (w/v) TFA. The crude peptides were

purified by reversed-phase HPLC on a Knauer smartline manager 5000 system (Knauer GmbH,

Berlin, Germany) equipped with a C8 (10 µm) LUNATM Phenomenex column (Phenomenex Inc.,

Torrance, CA, USA). Peptides were eluted with a linear gradient of acetonitrile/water/0.1% tri-

fluoroacetic acid and identified on an Agilent 6210 ESI-TOF mass spectrometer. Peptide purity

was determined by analytical HPLC on a Merck LaChrom system (Merck KGaA, Darmstadt, Ger-

many) equipped with a C8 (10 µm) LUNATM Phenomenex column (Phenomenex Inc., Torrance,

CA, USA). The gradient used was similar to those of the preparative HPLC.

Infrared spectroscopy

The gasphase IR experiments were performed at the free electron laser facility FELIX39 (Nieuwegein,

The Netherlands) using the Fourier-transform ion cyclotron (FT-ICR) mass spectrometer40 which

was temporarily equipped with a nano electrospray ionization source (MS Vision, Almere, The

Netherlands). Typically, 5 µl of a solution containing 1 mM peptide, 50% water, 50% methanol

and, where needed, 10 mM LiCl or NaCl, were placed in gold-coated, off-line emitters prepared

in-house. In order to obtain a stable spray, a small backing pressure of approximately 0.5 bar and a

relatively low capillary voltage of approximately 850 V was applied to the needle. The nESI gen-

erated ions were accumulated in a hexapole ion trap and subsequently transferred into the FT-ICR

mass spectrometer that is optically accessible via a KRS-5 window at the back end. After trap-

ping and SWIFT mass-isolation inside the ICR cell, the ions were irradiated by IR photons of the

free electron laser FELIX.72 The light provided by FELIX consists of macropulses of about 5 µs
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length at a repetition rate of 10 Hz, which contain 0.3 to 5 ps long micropulses with a micropulse

spacing of 1 ns. The wavelength is continuously tunable over a range of 40 to 2000 cm−1. Here,

typically wavelengths from 500 to 1850 cm−1 were scanned. When the IR light is resonant with an

IR active vibrational mode in the molecule, this results in the absorbance of many photons, which

causes dissociation of the ion (IRMPD). Monitoring of the fragmentation yield as a function of IR

wavelength leads to the IR spectra.

Acknowledgments

The authors acknowledge continuous interest and support by Gerard Meijer (Radboud University

Nijmegen). We gratefully acknowledge the “Stichting voor Fundamenteel Onderzoek der Materie”

(FOM) for providing the beam time on FELIX as well as support by members of the FELIX

staff: Britta Redlich, Lex van der Meer, Rene van Buuren, Jos Oomens, Giel Berden, and Josipa

Grzetic. Franziska Schubert, Sucismita Chutia, and Mariana Rossi (FHI Berlin) are acknowledged

for discussion and technical help. C.B. is grateful to Hans-Jörg Hofmann (Universität Leipzig) for

inspiring discussions.

The Supporting Material to this article contains further details of the simulation setup, exper-

imental procedures, energy hierarchies for AAPA+Li+ geometries with and without the cation at

different levels of theory, backbone torsion angles of low-energy conformers of AAPA and ADPA

in isolation and in the presence of Li+ and Na+, respectively, and Cartesian coordinates of the struc-

tures displayed in the article. The material is available online at http://www.fhi-berlin.

mpg.de/~baldauf/publications.html

References

(1) Pfeiffer, P.; von Modelski, J. Hoppe-Seyler’s Z Physiol Chem 1912, 81, 329–354.

(2) Pfeiffer, P. Hoppe-Seyler’s Z Physiol Chem 1924, 133, 22–61.

25



(3) Seebach, D.; Bossler, H.; Flowers, R.; Arnett, E. Helv Chim Acta 1994, 77, 291–305.

(4) Kofron, J.; Kuzmic̆, P.; Kishore, V.; Colón-Bonilla, E.; Rich, D. Biochemistry 1991, 30,

6127–6134.

(5) Kessler, H.; Gehrke, M.; Lautz, J.; Kock, M.; Seebach, D.; Thaler, A. Biochem Pharmacol

1990, 40, 169–173.

(6) Kock, M.; Kessler, H.; Seebach, D.; Thaler, A. J Am Chem Soc 1992, 114, 2676–2686.

(7) Garand, E.; Kamrath, M. Z.; Jordan, P. A.; Wolk, A. B.; Leavitt, C. M.; McCoy, A. B.;

Miller, S. J.; Johnson, M. A. Science 2012, 335, 694–698.

(8) Seebach, D.; Beck, A. K.; Studer, A. In Some Effects of Lithium Salts, of Strong Bases, and

of the Cosolvent DMPU in Peptide Chemistry, and Elsewhere; Ernst, B., Leumann, C., Eds.;

Modern synthetic methods 1995; Wiley-VCH, 1995; Chapter I, pp 1–178.

(9) Ramachandran, G.; Ramakrishnan, C.; Sasisekharan, V. J Mol Biol 1963, 7, 95–99.

(10) Lovell, S. C.; Davis, I. W.; Arendall, W. B.; de Bakker, P. I. W.; Word, J. M.; Prisant, M. G.;

Richardson, J. S.; Richardson, D. C. Proteins 2003, 50, 437–450.

(11) Fischer, G. Chem Soc Rev 2000, 29, 119–127.

(12) Dugave, C.; Demange, L. Chem Rev 2003, 103, 2475–2532.

(13) Weiss, M. S.; Jabs, A.; Hilgenfeld, R. Nat Struct Biol 1998, 5, 676–676.

(14) Richardson, J. S. Adv Protein Chem 1981, 34, 167–339.

(15) Möhle, K.; Gußmann, M.; Hofmann, H.-J. J Comput Chem 1997, 18, 1415–1430.

(16) Venkatachalam, C. M. Biopolymers 1968, 6, 1425–1436.

(17) Sibanda, B. L.; Thornton, J. M. Nature 1985, 316, 170–174.

26



(18) Hutchinson, E. G.; Thornton, J. M. Protein Sci 1994, 3, 2207–2216.

(19) Kunz, C.; Jahreis, G.; Günther, R.; Berger, S.; Fischer, G.; Hofmann, H.-J. J Pept Sci 2012,

18, 400–404.

(20) Abo-Riziq, A.; Bushnell, J. E.; Crews, B.; Callahan, M.; Grace, L.; de Vries, M. S. Chem

Phys Lett 2006, 431, 227–230.

(21) Bakker, J.; Aleese, L.; Meijer, G.; von Helden, G. Phys Rev Lett 2003, 91, 1–4.

(22) Compagnon, I.; Oomens, J.; Meijer, G.; von Helden, G. J Am Chem Soc 2006, 128, 3592–

3597.

(23) Kamariotis, A.; Boyarkin, O. V.; Mercier, S. R.; Beck, R. D.; Bush, M. F.; Williams, E. R.;

Rizzo, T. R. J Am Chem Soc 2006, 128, 905–916.

(24) Cimas, A.; Vaden, T. D.; de Boer, T. S. J. A.; Snoek, L. C.; Gaigeot, M.-P. J Chem Theory

Comput 2009, 5, 1068–1078.

(25) James III, W. H.; Müller, C. W.; Buchanan, E. G.; Nix, M. G. D.; Guo, L.; Roskop, L.;

Gordon, M. S.; Slipchenko, L. V.; Gellman, S. H.; Zwier, T. S. J Am Chem Soc 2009, 131,

14243–14245.

(26) James III, W. H.; Baquero, E. E.; Choi, S. H.; Gellman, S. H.; Zwier, T. S. J Phys Chem A

2010, 114, 1581–1591.

(27) Rossi, M.; Blum, V.; Kupser, P.; von Helden, G.; Bierau, F.; Pagel, K.; Meijer, G.; Schef-

fler, M. J Phys Chem Lett 2010, 1, 3465–3470.

(28) Plowright, R. J.; Gloaguen, E.; Mons, M. ChemPhysChem 2011, 12, 1889–1899.

(29) Chutia, S.; Rossi, M.; Blum, V. J Phys Chem B 2012, 116, 14788–14804.

(30) Rossi, M.; Scheffler, M.; Blum, V. J Phys Chem B 2013, 117, DOI: 10.1021/jp402087e.

27



(31) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865–3868.

(32) Tkatchenko, A.; Scheffler, M. Phys Rev Lett 2009, 102, 73005.

(33) Jorgensen, W.; Ulmschneider, J.; Tirado-Rives, J. J Phys Chem B 2004, 108, 16264–16270.

(34) Wang, J.; Cieplak, P.; Kollman, P. J Comput Chem 2000, 21, 1049–1074.

(35) Pappu, R.; Hart, R.; Ponder, J. J Phys Chem B 1998, 102, 9725–9742.

(36) Byun, B.; Song, I.; Chung, Y.; Ryu, K.; Kang, Y. J Phys Chem B 2010, 114, 14077–14086.

(37) Wasserman, Z.; Salemme, F. Biopolymers 1990, 29, 1613–1631.

(38) Fadel, A. R.; Jin, D. Q.; Montelione, G. T.; Levy, R. M. J Biomol NMR 1995, 6, 221–226.

(39) Oepts, D.; van der Meer, A.; van Amersfoort, P. Infrared Phys Techn 1995, 36, 297–308.

(40) Valle, J.; Eyler, J.; Oomens, J.; Moore, D.; van der Meer, A.; von Helden, G.; Meijer, G.;

Hendrickson, C.; Marshall, A.; Blakney, G. Rev Sci Instrum 2005, 76, 023103.

(41) Gaigeot, M.-P. Phys Chem Chem Phys 2010, 12, 3336–3359.

(42) Pendry, J. J Phys C: Solid State Phys 1980, 13, 937–944.

(43) Blum, V.; Heinz, K. Comput Phys Commun 2001, 134, 392–425.

(44) Gregoire, G.; Gaigeot, M. P.; Marinica, D. C.; Lemaire, J.; Schermann, J. P.; Desfrancois, C.

Phys Chem Chem Phys 2007, 9, 3082–3097.

(45) Varma, S.; Rempe, S. B. Biophys Chem 2006, 124, 192–199.

(46) Ikeda, T.; Boero, M.; Terakura, K. J Chem Phys 2007, 126, 034501.

(47) Semrouni, D.; Balaj, O. P.; Calvo, F.; Correia, C. F.; Clavaguéra, C.; Ohanessian, G. J Am

Soc Mass Sepctrom 2010, 21, 728 – 738.

28



(48) Balaj, O. P.; Semrouni, D.; Steinmetz, V.; Nicol, E.; Clavaguéra, C.; Ohanessian, G. Chem-

Eur J 2012, 18, 4583–4592.

(49) Kohtani, M.; Kinnear, B.; Jarrold, M. J Am Chem Soc 2000, 122, 12377–12378.

(50) Martens, J. K.; Compagnon, I.; Nicol, E.; McMahon, T. B.; Clavaguéra, C.; Ohanessian, G. J

Phys Chem Lett 2012, 3, 3320–3324.

(51) Noskov, S. Y.; Roux, B. J Mol Biol 2008, 377, 804–818.

(52) Hofmeister, F. N-S Arch Pharmakol 1888, 25, 1–30.

(53) von Hippel, P. H.; Wong, K.-Y. J Biol Chem 1965, 240, 3909–3923.

(54) Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. Science 2003, 301, 347–349.

(55) Kunz, W. Curr Opin Colloid In 2010, 15, 34 – 39.

(56) Dzubiella, J. J Am Chem Soc 2008, 130, 14000–14007.

(57) Dzubiella, J. J Phys Chem B 2009, 113, 16689–16694.

(58) von Hansen, Y.; Kalcher, I.; Dzubiella, J. J Phys Chem B 2010, 114, 13815–13822.

(59) Crevenna, A.; Naredi-Rainer, N.; Lamb, D.; Wedlich-Söldner, R.; Dzubiella, J. Biophys J

2012, 102, 907–915.

(60) Zhang, Y.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. J Am Chem Soc 2005, 127, 14505–

14510.

(61) Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M.

Comput Phys Commun 2009, 180, 2175–2196.

(62) Neese, F. WIREs Comput Mol Sci 2012, 2, 73–78.

(63) Truhlar, D. G. Chem Phys Lett 1998, 294, 45 – 48.

29



(64) Dunning Jr., T. H. J Chem Phys 1989, 90, 1007–1023.

(65) Tkatchenko, A.; Rossi, M.; Blum, V.; Ireta, J.; Scheffler, M. Phys Rev Lett 2011, 106, 118102.

(66) Marom, N.; Tkatchenko, A.; Scheffler, M.; Kronik, L. J Chem Theory Comput 2010, 6, 81–

90.

(67) Zhang, G.-X.; Tkatchenko, A.; Paier, J.; Appel, H.; Scheffler, M. Phys Rev Lett 2011, 107,

245501.

(68) Pople, J. A.; Binkley, J. S.; Seeger, R. Int J Quantum Chem 1976, 10, 1–19.

(69) Adamo, C.; Barone, V. J Chem Phys 1999, 110, 6158–6170.

(70) MacKerell Jr., A. D. et al. J Phys Chem B 1998, 102, 3586–3616.

(71) Schnieders, M.; Ponder, J. J Chem Theory Comput 2007, 3, 2083–2097.

(72) Oomens, J.; Sartakov, B.; Meijer, G.; von Helden, G. Int J Mass Spectrom 2006, 254, 1–19.

30


