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Abstract
Peptoids of α- and β-peptides (α- and β-peptoids) can be obtained by shifting the amino acid
side chains from the backbone carbon atoms of the monomer constituents to the peptide
nitrogen atoms. They are, therefore, N-substituted poly-glycines and poly-β-alanines,
respectively. Due to the substituted nitrogen atoms, the ability for hydrogen bond formation
between peptide bonds gets lost. It may be very interesting to see whether such non-natural
oligomers could be regarded as foldamers, which fold into definite backbone conformers. In
this paper, we provide a complete overview on helix formation in α- and β-peptoids on the
basis of systematic theoretical conformational analyses employing the methods of ab initio
molecular orbital (MO) theory. It can be shown that the α- and β-peptoid structures form
helical structures with both trans and cis peptide bonds despite the missing hydrogen bonds.
Obviously, the conformational properties of the backbone are more important for folding than
the possibility of hydrogen bonding. There are close relationships between the helices of
α-peptoids and poly-glycine and poly-proline helices of α-peptides, whereas the helices of
β-peptoids correspond to the well-known helical structures of β-peptides as, for instance, the
31-helix of β-peptides with 14-membered hydrogen-bonded rings. Thus, α- and β-peptoids
enrich the field of foldamers and may be used as useful tools in peptide and protein design.

M This article features online multimedia enhancements

1. Introduction

Important biological functions such as enzyme catalysis,
molecular recognition and information storage are realized
on the basis of special biomacromolecules that form definite
three-dimensional structures [1]. The three major polymers
in nature are proteins, nucleic acids and polysaccharides
[2]. It is a great challenge in chemistry and biochemistry
to look for possibilities for mimicking these native structures
employing unnatural chemical constituents, in particular, by
the development of novel oligomers that are able to adopt
stable secondary structures. Numerous activities in this field
are stimulated by the intention of influencing the properties of
peptides and proteins. Native peptides often make poor drugs
due to their low bioavailability as they are not resistant against
proteases and suffer from bad transport properties. Another
aim of modification might be the increase in specificity
of enzymes and the improvement of receptor selectivity
towards special substrates and drugs. Outside the biomimetic
aspects, the search for non-natural oligomeric sequences

with definite solution structure may lead to compounds with
novel properties which make them interesting for material
sciences. Moreover, they could be utilized as scaffolds for
nanotechnology.

It is popular to denote oligomers of non-natural
chemical constituents, which fold into stable definite solution
structures, as foldamers [3]. Foldamer research has
developed enormously over the last decade [4–7]. A great
number of experimental and theoretical studies deal with
the formation of secondary structure elements and indicate
the importance of various foldamer classes for a rational
molecular design. Essential stimulation in this field came
from the investigation of peptide foldamers composed of
homologous amino acids. In particular, the results for
sequences exclusively composed of β-amino acid constituents
(β-peptides) were extremely encouraging and indicate a wide
variety of definite secondary structures, which are comparable
with those in the native α-peptides [8–22]. In the meantime,
the concept of homologation was transferred to γ - and
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Figure 1. Conformers of blocked trans and cis α-peptoid monomer models.

Table 1. Torsion angles, relative energies in the gas phase and in solution and relative free enthalpies for the trans and cis conformers of the
blocked α-peptoid monomer models Ia and Ib at the HF/6-31G∗ level of ab initio MO theorya.

Conformersb ω ϕ ψ ω2 �E �Es �G

trans (Ia)
αD −171.1 79.2 −174.6 174.3 0.0c 0.0d 0.0e

C7β −171.8 −128.4 79.8 −177.8 5.4 10.4 5.2
α −172.1 −60.0 −42.7 174.4 27.3 15.8 26.6

cis (Ib)
αD −15.9 −76.9 −171.1 8.0 8.3 2.7 7.2
C7β 17.5 −153.1 59.1 16.7 20.9 20.6 18.5
α −17.7 67.2 48.7 10.5 23.3 24.5 21.8

a Torsion angles in degrees, energy values in kJ mol−1.
b Cf. structure formulae Ia and Ib.
c ET = −531.869 079 au.
d ET = −531.874 971 au.
e ET = −531.677 775 au.

Table 2. Torsion angles for the blocked hexamer helices of α-peptoids at the HF/6-31G∗ level of ab initio MO theorya.

Hexamerb ω ϕ ψ Hexamerb ω ϕ ψ

trans (Ia, n = 6) cis (Ib, n = 6)
αD −170.7 82.0 −176.9 αD 14.9 78.9 172.6

−169.2 81.4 −177.8 17.9 74.9 172.8
−169.0 81.2 −178.0 19.5 72.8 172.7
−169.0 80.9 −177.9 20.1 72.2 171.8
−169.3 80.8 −177.6 21.1 71.3 169.0
−169.3 78.8 −176.7 20.3 71.4 165.2

174.7 −5.0

C7β 172.5 −76.5 170.5 C7β 20.1 −150.6 61.7
−171.5 −130.2 75.7 21.4 −162.2 65.0
−172.2 −129.8 72.8 21.2 −162.2 64.5
−172.0 −129.4 72.8 21.8 −163.2 64.4
−172.2 −129.9 71.4 20.5 −162.1 65.3
−171.8 −129.3 70.0 22.7 −162.2 59.8
−177.0 12.8

α −171.1 −60.5 −43.0 α/αD −19.1 67.4 46.9
−173.3 −57.2 −44.1 18.7 73.2 163.7
−173.4 −56.2 −44.6 −21.2 66.4 47.9
−172.8 −56.8 −43.7 19.4 73.6 162.4
−173.3 −59.3 −43.8 −17.2 67.6 52.6
−171.3 −56.8 −45.3 19.5 70.8 168.5

175.6 −7.7

a Torsion angles in degrees.
b Derived from the conformers of Ia and Ib in table 1.
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(A)

(B)

Figure 2. Helices of (A) trans α-peptoids and (B) cis α-peptoids.

δ-peptides and even to hybrid peptides composed of different
homologous amino acids [23–39].

A bit earlier than the systematic activities in the field
of β-peptides, another idea of peptide foldamers has got
considerable attention. Zuckermann et al suggested peptide
oligomers composed of α-amino acids bearing their side
chains not at the C(α) atoms, but at the peptide nitrogen
atoms of a sequence [40–44]. Such peptides can be
considered as N-substituted poly-glycines and are denoted
as peptoids. Some important consequences result from this
structure modification. Because of the lack of chirality,
right- and left-handed helices become energetically equivalent.
Moreover, the substitution of the peptide nitrogen atoms makes
the formation of hydrogen bonds between peptide bonds
impossible. These hydrogen bonds are usually considered to

(A) (B)

Figure 3. Stereoviews of the superimpositions of (A) the cis αD

helix of α-peptoids with the poly-proline I helix PPI and (B) the
trans αD helix of α-peptoids with the poly-proline II helix.

Table 3. Relative energies in the gas phase and in solution and
relative free enthalpies for the blocked trans and cis hexamer helices
of α-peptoids at the HF/6-31G∗ level of ab initio MO theorya.

Hexamerb �E �Es �G

trans (Ia, n = 6)
αD 0.0c 0.0d 0.0e

C7β 46.9 58.9 52.7
α 124.7 117.8 139.7

cis (Ib, n = 6)
αD 15.3 22.8 18.8
α/αD 81.8 104.3 85.1
C7β 151.9 173.6 160.7

a Energies in kJ mol−1.
b Derived from the conformers of Ia and Ib
in table 1.
c ET = −1760.462 092 au.
d ET = −1761.073 082 au.
e ET = −1760.462 092 au.

be of essential importance for the formation of characteristic
secondary structure elements in native peptides and proteins.
Finally, the occurrence of cis peptide bonds should increase
by nitrogen substitution as it is known for peptide bonds with
the amino acid proline. First theoretical estimations of the
secondary structure formation in these oligomers revealed
the result that helix formation should be possible despite the
missing hydrogen bonds [10–12], which was confirmed in
several experimental studies afterwards [45–47]. Especially
interesting were secondary structures with cis peptide bonds,
which are scarce in native peptides and proteins with exception
of peptide bonds with the amino acid proline.

Following the development in the field of peptide
foldamers, in particular that for the homologous β-, γ -
and δ-peptides, it could also be interesting to examine the
secondary structure of the peptoids of the higher homologues
as promising candidates for peptide and protein design. These
compounds did not attract attention until now. In this study, we
therefore extend our structure investigations from α-peptoids
to oligomers of N-substituted β-alanines as prototype for
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Figure 4. Most stable conformers of the trans and cis monomers of β-peptoids IIa and IIb.

Table 4. Torsion angles, relative energies in the gas phase and in solution and relative free enthalpies for the trans and cis conformers of the
blocked β-peptoid monomer models IIa and IIb at the HF/6-31G∗ level of ab initio MO theorya.

Conformersb ω ϕ θ ψ ω2 �E �Es �G

trans (IIa)
t-1 −173.8 −78.2 −70.7 170.4 −175.4 0.0c 5.0 0.0d

t-2 −173.0 91.7 −50.3 −91.7 174.0 3.9 11.7 10.0
t-3 −176.6 −83.8 −179.6 −86.6 −176.9 5.1 6.0 3.0
t-4 174.7 81.9 174.8 174.5 −174.4 5.2 0.0e 1.2
t-5 176.1 −78.4 −63.4 −82.9 −175.4 14.7 12.9 13.8
t-6 −179.1 −85.0 −177.3 92.7 −178.0 22.7 10.4 20.2
t-7 169.4 −122.5 61.3 176.9 −174.4 24.6 13.8 21.6
t-8 −170.6 12.9 −79.0 −16.9 −170.8 70.0 60.3 74.4

cis (IIb)
c-1 9.9 95.0 −179.6 −179.7 9.9 7.5 0.7 3.7
c-2 7.8 116.2 −72.0 163.1 −2.7 9.6 6.4 8.9
c-3 7.8 87.5 81.2 −165.2 4.6 14.5 11.5 11.6
c-4 4.1 114.2 −56.1 −76.1 −21.6 22.4 15.8 23.2
c-5 −5.7 −90.1 −64.2 −74.9 −20.1 25.7 16.3 25.2
c-6 12.1 −77.9 −40.4 −76.8 −18.9 29.9 22.9 27.8

a Torsion angles in degrees, energies in kJ mol−1.
b Cf. structure formulae IIa and IIb.
c ET = −570.906 326 au.
d ET = −570.686 257 au.
e ET = −570.909 863 au.

peptoids derived from β-peptides (β-peptoids). On the basis of
a systematic conformational analysis employing the methods
of ab initio MO theory, we want to provide a comparison of
the helix formation in both α- and the novel β-peptoids and
the typical periodic secondary structure elements of native
peptides and proteins.

2. Methodology

Two strategies were applied to get a complete overview on
the periodic secondary structures of the oligomer sequences
[25]. In the monomer approach, the conformers of the blocked
monomer units of the trans (Ia, IIa) and cis (Ib, IIb) α- and
β-peptoids were determined by a systematic variation of the
torsion angles ϕ and ψ in I and ϕ, θ and ψ in II in intervals of
30◦ and subsequent geometry optimization of the resulting
starting conformations at the Hartree–Fock (HF) level of
ab initio molecular orbital theory employing the 6-31G∗ basis
set (HF/6-31G∗). For an estimation of electron correlation
effects, density functional theory (DFT) was applied using the
B3LYP functional and the 6-31G∗ basis set (B3LYP/6-31G∗).

Scheme 1

Then, the obtained conformers of the monomers were
extended to blocked hexamers, which were re-optimized at
the same theoretical levels to check whether the periodic
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Table 5. Torsion angles for the blocked hexamer helices of trans β-peptoids at the HF/6-31G∗ level of ab initio MO theorya.

Hexamerb ω ϕ θ ψ Hexamera ω ϕ θ ψ

t-1 −170.9 −78.9 −70.7 168.6 t-4 170.4 81.8 175.3 178.1
−174.8 −78.9 −71.4 168.6 175.6 81.8 175.4 178.7
−174.8 −78.9 −71.4 168.8 175.6 82.0 175.4 178.8
−174.9 −78.9 −71.3 168.8 175.6 82.2 176.3 173.8
−174.9 −78.9 −71.3 168.6 −177.8 79.5 176.0 178.6
−174.9 −78.3 −71.9 170.0 175.4 81.9 175.0 175.1
−179.9 −174.5

t-2 −175.5 93.9 −51.6 −86.1 t-5 178.6 −78.4 −66.7 −92.4
173.3 122.8 −45.1 −72.3 177.1 −77.2 −59.7 −94.4
176.1 98.9 −52.9 −83.3 178.6 −78.5 −60.9 −94.8
173.4 120.7 −41.7 −79.8 178.5 −78.0 −60.0 −94.9

−177.8 102.1 −51.6 −78.9 179.1 −77.7 −60.9 −96.5
176.6 98.3 −53.0 −88.0 177.9 −79.8 −56.5 −86.6
173.5 −175.1

t-3 −171.1 −83.1 178.6 −92.8 t-7 158.6 −124.0 60.8 −163.0
−176.7 −83.6 178.5 −92.0 168.2 −125.4 62.6 −162.7
−176.9 −83.5 178.5 −91.9 169.2 −124.0 62.2 −163.8
−176.9 −83.5 178.5 −91.9 168.8 −123.7 61.8 −163.3
−176.9 −83.6 178.9 −92.0 169.7 −123.6 61.5 −163.5
−177.0 −84.0 179.9 −85.6 171.2 −123.6 65.0 −177.7
−177.0 −174.8

a Torsion angles in degrees.
b Derived from the conformers of IIa in table 4.

Table 6. Torsion angles for the blocked hexamer helices of cis β-peptoids at the HF/6-31G∗ level of ab initio MO theorya.

Hexamerb ω ϕ θ ψ Hexamerb ω ϕ θ ψ

c-1 8.6 95.8 −179.6 −178.2 c-3 12.4 83.9 71.5 −143.6
7.7 96.7 −180.0 −179.0 −10.2 92.9 80.2 −171.9
8.0 97.0 −179.4 −178.3 −7.0 100.1 87.2 177.3
7.6 97.2 −179.3 −178.3 11.1 90.7 77.8 −152.4
7.6 97.2 −179.2 −178.8 −5.4 92.1 79.2 −162.8
8.1 97.5 −178.9 −178.6 −4.9 95.4 85.3 −172.7
9.4 3.1

c-2 12.1 116.2 −72.0 165.0 c-5 −0.3 −90.2 −62.2 −83.0
13.5 112.5 −70.7 167.4 −9.9 −85.2 61.2 −83.5
13.0 112.8 −70.5 168.1 −9.7 −84.9 −60.4 −84.0
13.0 112.7 −70.4 167.9 −9.6 −84.6 −59.8 −84.3
13.0 112.8 −70.2 168.0 −9.6 −84.6 −59.7 −83.5
12.7 112.9 −70.4 167.6 −10.7 −84.8 −61.9 −76.2

−3.3 −19.5

a Torsion angles in degrees.
b Derived from the conformers of IIb in table 4.

structures are kept or not. In the case of peptoids, the monomer
approach has a good chance to provide all possible helices,
since hydrogen bond formation is impossible. Thus, definite
structures, which become possible if a critical sequence length
is reached for the realization of special interactions, are
improbable. Nevertheless, we also employed the oligomer
approach to exclude further conformers. In this case,
the backbone torsion angles of blocked peptoid hexamers
were systematically varied in steps of 30◦ considering the
periodicity in the monomer constituents of the sequence
followed by geometry optimization of the conformations.
As expected, this approach did not provide more helices
than already obtained by the extension of the monomer
structures. All stationary points on the potential hypersurfaces
of the monomers and hexamers were confirmed as minimum

structures by frequency calculations, which also provided the
free enthalpy values. An estimation of the solvent influence
was performed for an aqueous environment with a dielectric
constant of ε = 78.4 on the basis of a polarizable continuum
model (PCM) [48]. The program packages GAUSSIAN03
[49] and GAMESS [50] were employed for all quantum
chemical calculations.

3. Results and discussion

3.1. α-Peptoid helices

The systematic conformational analysis for the blocked
trans and cis α-peptoid monomers Ia and Ib provides the
three conformers αD, C7β and α in agreement with former
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(A)

(B)

Figure 5. Most stable blocked hexamer helices of (A) trans and
(B) cis β-peptoids.

calculations (table 1, figure 1) [10–12]. The basis for the
nomenclature of the conformers is [51]. Interestingly, the
values of the backbone torsion angles are nearly the same in
the corresponding trans and cis conformers. Most stable
are the αD conformers followed by the C7β and α conformers.
The comparison with the minimum conformations of

(A) (B)

Figure 6. Stereoviews of the superimpositions of (A) the trans
β-peptoid hexamer t-5 and the H10 helix of β-peptides and (B) the
trans β-peptoid hexamer t-7 and the H14 helix of β-peptides.

native α-amino acid constituents provides only limited
correspondence. In blocked α-amino acids, the C7eq and
C5 conformers [51, 52], which do not appear in the peptoid
structures as energy minima, are distinctly more stable than
the αD conformer. The C7β form does not exist at all. In the
peptoids, this conformer represents a structural compromise
between the C7eq and β2 conformers of the α-amino acid
monomers. A very interesting fact is the appearance of the
α-conformer in the peptoids. It corresponds perfectly to the
α-helix conformation of peptides and proteins. However, in
blocked monomers of native amino acids, it does not represent
a minimum conformation.

The extension of the three monomers to blocked
hexamers reveals that the corresponding helices of the trans
α-peptoids can be localized as minimum conformations at
all approximation levels. In the cis α-peptoids, the α-
helical conformation does not represent a stable structure.
Here, a novel secondary structure type appears with the
amino acid constituents alternating in α and αD conformations
(α/αD). The structures of all helices are visualized in
figure 2. Table 2 provides the backbone torsion angles
and table 3 the relative energies of the various structures
at the HF/6-31G∗ level of the ab initio MO theory. The
torsion angles at the B3LYP/6-31G∗ level of density functional
theory (DFT) are given as supplementary data available from
stacks.iop.org/PhysBio/3/S1. The most stable helix can be
derived from the αD conformer. As expected for N-substituted
poly-glycines, this helix corresponds to the poly-glycine
II helix (PGII), for which the αD conformer is obviously
the basic unit. Its left-handed form is related to the left-
handed poly-L-proline II helix (PPII) with trans peptide bonds.
Figure 3 shows an overlay of the αD or PGII helix of the
peptoids and the PPII helix. In a similar way, the cis αD

conformer is the basis for the most stable helix of the cis α-
peptoids, which has to be compared with the poly-proline I
helix (PPI) with about the same backbone torsion angle values
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as the PGII helix, but cis peptide bonds now. This helix type
is the most stable helix according to the calculations. It was
also found for peptoid pentamers in x-ray studies [43]. The
superimposition of the cis αD-helix and the PPI helix is also
given in figure 3. The trans α-helix of the α-peptoids is less
stable than the αD-helix (table 3). A detailed analysis of the
structure reveals that it can only be realized with rather small
substituents of the peptide nitrogen atoms, which point into
the direction of the original hydrogen bond of the α-helix in
native peptides.

Our calculations demonstrate a considerable potential
of helix formation in trans and cis α-peptoids despite the
missing hydrogen bonds. This reveals that folding into helical
structures is basically determined by the conformational
properties of the backbone. Hydrogen bonding may support
folding into special helical conformations, but is neither the
driving force nor a presupposition for helix formation in
peptides and proteins.

3.2. β-Peptoid helices

In comparison to α-peptoids, the structure of β-peptoids was
not investigated until now. Our calculations on the blocked
trans and cis monomers IIa and IIb provide eight conformers
for the trans β-peptoids and six for the cis β-peptoids
(table 4). Again, there is close correspondence of the
backbone torsion angle values of the trans and cis monomers
at the HF/6-31G∗ approximation level. The B3LYP/6-31G∗

data are given in the supplementary data available from
stacks.iop.org/PhysBio/3/S1. The most stable conformers are
illustrated in figure 4.

A comparison between the trans β-peptide conformers
and the conformers of the monomers of β-peptides shows
some similarities. Thus, the conformers t-1 and t-3 (table 4)
can be well compared with conformers of β-peptides with
six- and eight-membered hydrogen-bonded pseudocycles. The
conformers t-5 and t-7 (table 4) correspond to the turns of
the H10 and H14 helices in β-peptides. The conformer t-2
reflects one of the two turns of the mixed H10/12 helix [53–55]
of the β-peptides. It should also be noted that there are no
relationships between the basic conformers of IIa and those of
β-proline, which was subject of a theoretical conformational
analysis [56]. Obviously, values of about ±160◦ for the torsion
angle ϕ found in β-proline conformers are not preferred in the
acyclic β-peptoid structures studied here.

After extension of the monomers to blocked hexamers,
six helical structures are kept in the trans β-peptoids and four
in the cis β-peptoid structures. Their selection is shown in
figure 5. The backbone torsion angles of the trans and
cis β-peptoid helices are listed in tables 5 and 6. Table 7
provides the stability data for gas phase and solution.
Especially interesting are the helices derived from the
conformers t-5 and t-7. They represent the analogues of the
helices H10 and H14 in β-peptides [8, 18], which is documented
by the superimpositions in figure 6. Like in α-peptides, this
confirms the fact that the conformational properties of the
backbone and not hydrogen bonding determine the folding in
β-peptides. The helices generated from the conformers t-1

Table 7. Relative energies in the gas phase and solution and relative
free enthalpies for the blocked hexamer helices of α-peptoids at the
HF/6-31G∗ level of ab initio MO theorya.

Hexamerb �E �Es (in kJ mol−1) �G

trans (IIa, n = 6)
t-1 0.0c 22.3 3.1
t-3 23.5 37.1 19.2
t-4 24.7 0.0d 0.0e

t-5 41.6 80.5 60.9
t-2 59.8 18.0 62.9
t-7 85.9 97.1 95.9

cis (IIa, n = 6)
t-2 30.1 36.8 33.8
t-1 42.1 12.1 18.8
t-3 48.6 100.2 57.7
t-5 152.0 102.8 148.2

a Energies in kJ mol−1.
b Derived from the conformers of IIa and IIb in
table 4.
c ET = −1995.285 351 au
d ET = −1995.284 257 au.
e ET = −1994.508 360 au.

and t-3 also find their counterparts in β-peptide helices with
six- and eight-membered hydrogen-bonded rings. These two
helices are most stable in the β-peptoid series.

4. Conclusions and outlook

The results of our study show that α- and β-peptoids are able
to form various helices with both trans and cis configuration of
the peptide bonds, although the ability to form hydrogen bonds
got lost by the substitution of the peptide nitrogen atoms.
This result is remarkable for the understanding of folding
in native peptides and proteins, since the conformational
properties of the backbone are obviously more important
for the formation of definite secondary structure elements
than hydrogen bonding. A structure comparison between the
helices of α- and β-peptoids and those of native α-peptides
and synthetic β-peptides reveals considerable similarities. In
particular the possibility to replace the amino acid proline
by α-peptoid constituents deserves attention. Both α- and
β-peptoids represent interesting foldamer classes, which are
promising for a rational peptide and protein design and may
also be interesting in material sciences.
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