Supporting Information

Helix Formation in α , γ - and β , γ -Hybrid Peptides – Theoretical Insights into Mimicry of α - and β -Peptides

Carsten Baldauf, Robert Günther and Hans-Jörg Hofmann*

Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany

e-mail: hofmann@uni-leipzig.de

Contents

Table 1. Backbone Torsion Angles of the Most Stable Helices of Alternating α,γ -HybridS2PeptideOctamers at the DFT/B3LYP/6-31G* Level of ab initio MO Theory.

Table 2. Relative Energies of the Most Stable Helices of Alternating α , γ -Hybrid Peptide S3 Octamers at the HF/6-31G*, DFT/B3LYP/6-31G*, and PCM//HF/6-31G* Levels of ab initio MO Theory.

Table 3. Backbone Torsion Angles of the Most Stable Helices of Alternating β , γ -Hybrid S4 Peptide Octamers at the DFT/B3LYP/6-31G* Level of ab initio MO Theory.

Table 4. Relative Energies of the Most Stable Helices of Alternating β , γ -Hybrid Peptide S5 Octamers at the HF/6-31G*, DFT/B3LYP/6-31G* and PCM//HF/6-31G* Levels of ab initio MO Theory.

Table 5. Backbone Torsion Angles and Relative Energies of Selected α,γ -Hybrid PeptideS6Octamers with Nearest Neighbor Hydrogen Bonds at the HF/6-31G* Level of ab initio MOTheory.

Table 6. Backbone Torsion Angles and Relative Energies of Selected β , γ -Hybrid PeptideS7Octamers with Nearest Neighbor Hydrogen Bonds at the HF/6-31G* Level of ab initio MOTheory.

Page

Helix ^b	φ	θ	ζ	Ψ	Helix ^b	φ	θ	ζ	Ψ
H_{10}^{I}	-126.0		-	29.3	$H_{20}{}^{I}$	124.8		-	-23.8
	66.1	24.2	44.7	44.3		68.3	61.8	-144.4	-138.8
	97.3			129.7		78.5			11.4
	110.4	-53.3	72.7	57.3		77.1	53.4	176.1	-134.7
	107.6			127.3		81.8			-82.0
	109.2	-52.7	73.4	55.3		-138.1	60.5	174.5	-172.5
	99.8			162.4		84.0			-67.9
	106.9	45.2	46.7	107.3		-133.8	65.1	169.8	149.4
H_{18}^{I}	121.5			96.0	$H_{10/12}^{I}$	136.4			-37.3
10	84.7	173.6	178.9	121.8	10/12	-94.5	75.4	-72.0	151.0
	81.5			-73.8		136.3			-48.0
	-86.4	-175.4	175.3	111.8		-93.7	77.5	-73.4	151.4
	67.8			46.2		134.5			-46.7
	-131.6	-148.9	63.4	73.3		-95.0	78.4	-73.0	150.7
	98.9			-170.2		135.4			-48.8
	77.8	-177.5	66.0	107.7		-100.1	77.7	-68.9	137.3
$H_{21/23}^{I}$	-123.7			38.9	$H_{12/10}^{I}$	73.9			-146.0
21125	72.7	-176.4	-77.3	145.2	12/10	-63.6	-34.0	-46.0	127.9
	82.6			-58.6		67.5			-147.1
	85.8	-179.1	-67.8	161.3		-64.7	-31.8	-46.8	126.9
	83.0			-66.5		67.0			-147.0
	118.6	-179.5	-67.1	137.1		-63.5	-32.8	-46.6	126.0
	-126.1			42.6		68.1			-144.9
	82.4	-176.2	-67.3	157.9		-61.5	-36.1	-49.1	133.7
H_{26}^{I}	-159.5			171.0	$H_{18/20}{}^{I}$	81.4			-68.5
	77.7	178.4	171.8	77.7		-93.1	65.4	-167.6	-126.5
	81.7			-73.7		82.3			-65.7
	-89.4	-179.7	173.5	156.2		-114.0	62.1	-105.7	170.0
	79.7			22.5		143.5			-141.2
	94.7	-172.0	178.3	-166.2		-93.5	74.6	-81.0	145.6
	58.0			46.2		173.3			176.7
	77.2	178.9	173.2	102.9		-86.5	77.4	-87.3	171.2
H_{12}^{I}	72.4			28.1	$H_{20/18}{}^{I}$	141.6			-156.9
	120.9	-50.8	-63.2	124.1		-105.0	45.9	-94.8	139.3
	69.8			29.7		170.4			173.2
	120.9	-50.9	-63.2	122.2		-119.4	56.6	-86.2	136.8
	69.9			30.8		133.1			-133.7
	121.3	-52.4	-64.6	128.3		-161.6	64.2	-84.2	-176.3
	85.3			14.8		100.2			-179.7
	100.6	-67.7	-73.8	95.8		-138.7	62.0	-71.0	148.7
$H_{15/17}^{I}$	75.7			19.7					
	64.0	56.4	-145.8	179.4					
	73.6			20.6					
	69.0	58.7	-146.3	171.9					
	70.9			24.0					
	71.4	61.8	-155.3	165.4					
	83.8			4.7					
	96.1	57.7	162.3	177.6					
^a In degr	rees, see s	tructure	formula	1 in Figur	e 1 of the artic	cle. ^b See T	Fable 1 i	in the art	icle.

Table 1. Backbone Torsion Angles^a of the Most Stable Helices of Alternating α/γ -Hybrid Peptide Octamers at the DFT/B3LYP/6-31G* Level of ab initio MO Theory.

		ΔΕ		_	ΔΕ				
Helix	HF	B3LYP	PCM ^c	Helix	HF	B3LYP	PCM ^c		
H_{10}^{I}	74.6	88.2	38.7	${\rm H_{20}}^{\rm III}$	98.0	83.3	95.6		
${\rm H_{10}}^{\rm II}$	80.3	92.2	42.9	${\rm H_{20}}^{\rm IV}$	108.6	139.5	48.8		
${\rm H_{10}}^{\rm III}$	80.6	88.0	37.6	${\rm H_{20}}^{\rm V}$	112.1	135.5	65.0		
H_{10}^{IV}	100.5	108.9	73.9	H_{20}^{VI}	138.1	167.4	57.8		
H_{18}^{I}	74.9	86.5	76.8	$H_{10/12}{}^{I}$	32.1	40.9	34.9		
H_{18}^{II}	83.7	101.5	64.9	${\rm H_{10/12}}^{\rm II}$	48.0	55.5	52.1		
H_{18}^{III}	140.4	156.2	86.1	$H_{10/12}^{III}$	93.0		97.0		
H_{18}^{IV}	208.3	219.1	141.5	$H_{12/10}{}^{I}$	4.6	21.5	31.1		
$H_{21/23}^{I}$	106.8	133.6	46.9	$H_{12/10}^{II}$	11.0	38.2	24.9		
$H_{21/23}^{II}$	111.0	136.4	54.5	$H_{12/10}^{III}$	30.8	18.2	37.0		
$H_{21/23}^{III}$	134.9	126.9	85.8	$H_{18/20}{}^{I}$	0.0 ^d	0.0 ^e	52.7		
H_{26}^{I}	79.9	115.5	60.6	$H_{18/20}{}^{II}$	11.1	14.1	49.2		
H_{26}^{II}	118.7	155.4	67.2	$H_{18/20}^{III}$	15.6	11.6	52.0		
H_{26}^{III}	139.9	90.2	82.7	H _{18/20} ^{IV}	28.0	27.7	65.7		
H_{12}^{I}	35.9	54.6	0.0^{f}	H _{18/20} ^V	36.8	35.2	73.5		
H_{12}^{II}	77.2	95.4	35.7	${\rm H_{18/20}}^{\rm VI}$	102.5	96.9	137.0		
H_{12}^{III}	109.2	121.6	67.1	$H_{20/18}{}^{I}$	9.2	10.5	56.2		
H_{12}^{IV}	145.5	133.0	94.0	$H_{20/18}{}^{II}$	22.5	26.2	59.6		
$H_{15/17}^{I}$	75.9	103.2	31.5	$H_{20/18}^{III}$	35.4	33.8	71.4		
$H_{15/17}^{II}$	84.3	114.7	40.5	H _{20/18} ^{IV}	35.7	37.3	66.1		
$H_{15/17}^{III}$	118.6	139.6	38.0	${\rm H_{20/18}}^{\rm V}$	45.8	45.2	74.3		
$H_{15/17}^{IV}$	131.9	162.5	72.2	$\mathrm{H_{20/18}}^{\mathrm{VI}}$	46.5	48.3	73.5		
$H_{20}{}^{I}$	75.9	94.7	67.1	H _{20/18} ^{VII}	58.8	63.1	91.8		
H_{20}^{II}	95.4	119.2	51.2						
^a In kJ/mol	b See	Table 1	in the	article. $c \varepsilon =$	78.4. ^d	$E_{\rm T} = -2213$	3.868493 a		

Table 2. Relative Energies^a of the Most Stable Helices of Alternating α , γ -Hybrid Peptide Octamers at the HF/6-31G*, DFT/B3LYP/6-31G* and PCM//HF/6-31G* Levels of ab initio MO Theory.

Helix ^b	φ	θ	ζ	ψ	Helix ^b	φ	θ	ζ	Ψ
H_{11}^{I}	-128.5	-75.4		125.9	H_{22}^{I}	122.6	-156.1		-103.1
	73.3	73.7	-64.4	111.6		-116.8	50.1	59.3	-158.0
	164.3	-60.7		144.5		-157.8	175.7		161.3
	69.0	69.0	-62.7	116.3		-121.8	49.2	55.2	-141.7
	160.4	-60.3		145.4		-127.0	176.1		143.9
	70.4	67.9	-63.8	120.2		-144.3	52.7	53.7	-144.1
	157.7	-60.9		151.2		-99.3	176.9		152.0
	75.4	61.4	-74.2	141.9		-175.2	60.6	66.5	-154.4
$H_{15/16}^{I}$	-88.4	-161.4		110.0	$H_{11/13}^{I}$	70.0	55.2		-97.1
	85.9	61.8	-84.6	144.6		-100.5	90.4	-77.6	150.5
	159.6	-82.2		145.5		97.5	62.3		-107.1
	79.1	61.4	-80.0	142.4		-108.9	96.9	-72.0	144.5
	149.3	-80.3		149.4		97.4	62.1		-108.6
	89.4	55.6	-87.5	125.9		-115.3	104.9	-65.7	138.7
	180.0	-74.2		137.1		95.6	60.3		-107.8
	79.2	63.0	-70.6	132.2		-95.8	84.4	-75.2	140.6
H_{20}^{I}	-148.3	-82.3		133.4	$H_{13/11}^{I}$	57.3	46.9		-151.1
	81.0	64.3	173.5	-155.0		-68.4	-33.1	-54.4	133.2
	145.5	-65.2		122.0		111.0	-67.0		-83.2
	81.9	59.6	-179.3	-131.9		-69.9	-38.7	-50.0	131.2
	130.2	-64.4		112.3		113.7	-65.6		-82.1
	96.0	67.3	-172.4	-145.1		-71.5	-39.2	-50.0	133.5
	117.8	-59.7		132.2		118.1	-67.0		-90.6
	81.6	62.8	-174.4	-129.9		-65.8	-35.3	-48.4	150.0
H_{13}^{I}	75.6	-95.8		136.5	$H_{20/22}^{I}$	53.0	47.5		-100.8
	127.8	-61.6	-63.8	131.1		-101.4	-178.1	168.4	145.8
	97.8	-93.3		111.4		51.7	52.0		-102.1
	123.6	-58.5	-61.9	128.5		-122.3	-177.5	174.1	113.6
	99.0	-92.3		107.2		79.3	58.4		-151.4
	130.4	-61.3	-60.9	125.5		-90.7	-177.5	174.4	118.0
	95.7	-90.1		116.7		85.3	60.8		-170.5
	118.7	-61.0	-59.4	127.9		-100.4	63.6	-176.7	-133.7
$H_{18/17}^{I}$	-103.2	83.9		-124.4	$H_{22/20}{}^{I}$	79.6	49.1		-156.5
	-115.9	60.4	71.8	-146.7		-93.5	177.7	173.6	70.4
	-143.2	90.2		-155.8		75.6	60.7		174.8
	-123.7	60.5	55.3	-141.0		-86.5	-177.4	171.4	82.9
	-133.1	151.0		-159.9		65.8	59.3		-148.2
	-127.6	54.2	54.3	-130.3		-126.8	-179.2	175.1	110.9
	165.7	168.1		-112.9		45.4	48.3		-112.4
	-81.0	-60.4	176.4	-119.2		-166.0	179.4	-178.0	134.1
^a In deg	rees, see s	tructure	formula	3 in Figu	re 1 in the arti	cle. ^b See	Table 1	in the art	icle.

Table 3. Backbone Torsion Angles^a of the Most Stable Helices of Alternating β/γ -Hybrid Peptide Octamers at the DFT/B3LYP/6-31G* Levels of ab initio MO Theory.

		ΔΕ		_	ΔΕ				
Helix	HF	B3LYP	PCM ^c	Helix	HF	B3LYP	PCM ^c		
H_{11}^{I}	52.4	50.6	0.0 ^d	$H_{11/13}^{II}$	53.0	43.0	53.7		
$\mathbf{H}_{11}^{\mathrm{II}}$	65.1	64.8	15.4	$H_{11/13}^{III}$	54.7	44.1	37.6		
$\mathbf{H}_{11}^{\mathrm{III}}$	77.7	73.7	26.6	H _{11/13} ^{IV}	81.6	71.8	68.2		
H_{11}^{IV}	86.1	85.8	44.0	$H_{13/11}{}^{I}$	42.1	34.7	44.3		
H _{15/16} ^I	86.9	88.4	26.4	$H_{13/11}{}^{II}$	61.4	38.8	62.1		
H _{15/16} ^{II}	113.1	118.6	48.4	$H_{13/11}^{III}$	85.3	74.0	81.6		
H _{15/16} ^{III}	115.0	113.6	49.5	$H_{13/11}^{IV}$	104.2	85.0	98.9		
$H_{20}{}^{I}$	108.5	115.7	21.2	$H_{13/11}^{V}$	106.1	97.3	88.6		
$H_{20}{}^{II}$	127.2	129.6	45.5	$H_{20/22}{}^{I}$	0.0 ^e	0.0^{f}	19.2		
H_{20}^{III}	130.5	136.2	46.0	$H_{20/22}{}^{II}$	12.1	8.4	17.8		
H_{20}^{IV}	133.6	141.7	47.2	$H_{20/22}^{III}$	36.1	22.1	_g		
H_{20}^{V}	143.9	158.8	73.6	$H_{20/22}^{IV}$	37.5	18.5	49.4		
H_{20}^{VI}	152.1	151.0	59.1	$H_{20/22}^{V}$	37.7	25.1	51.1		
H_{13}^{I}	59.4	44.7	20.5	${\rm H_{20/22}}^{\rm VI}$	45.2	40.7	60.0		
H_{13}^{II}	97.2	79.2	54.0	$H_{20/22}^{VII}$	63.2	54.6	79.2		
H_{13}^{III}	114.2	106.8	64.0	$H_{20/22}^{VIII}$	67.3	49.2	83.2		
H_{13}^{IV}	201.4	183.6	146.8	$H_{20/22}^{IX}$	92.0	85.3	112.6		
H _{18/17} ^I	101.1	96.1	46.7	$H_{20/22}{}^{X}$	97.9	82.2	103.4		
H _{18/17} ^{II}	102.9	99.2	52.8	$H_{22/20}{}^{I}$	23.8	26.3	33.9		
$H_{18/17}^{III}$	106.1	97.0	54.0	$H_{22/20}$ ^{II}	24.2	22.9	37.7		
H _{18/17} ^{IV}	109.3	103.4	46.4	$H_{22/20}^{III}$	36.3	21.0	46.5		
H _{18/17} ^V	125.0	117.4	67.1	$H_{22/20}$ ^{IV}	36.9	12.9	63.2		
H _{18/17} ^{VI}	125.7	122.6	52.2	${\rm H}_{22/20}{}^{\rm V}$	40.7	30.7	50.6		
H_{22}^{I}	132.3	133.6	55.4	$H_{22/20}^{VI}$	41.0	35.8	52.9		
H_{22}^{II}	134.0	140.7	_g	$H_{22/20}^{VII}$	50.7	31.4	73.8		
H_{22}^{III}	183.5	174.9	72.7	$H_{22/20}^{VIII}$	58.2	53.8	62.5		
$H_{11/13}{}^{I}$	13.8	2.7	15.1	$H_{22/20}^{IX}$	65.3	47.6	67.3		
^a In kJ/mol	^b See	Table 1	in the	article. $c \epsilon =$	= 78.4. ^d	$E_{\rm T} = -236$	9.987620 a.u		
$^{\circ} E_{T} = -2370$.020399	$a.u. ^{1}E_{T} =$	-2384.457	246 a.u. ^g No i	result ava	ilable.			

Table 4. Relative Energies^a of the Most Stable Helices of Alternating β , γ -Hybrid Peptide Octamers at the HF/6-31G*, DFT/B3LYP/6-31G* and PCM//HF/6-31G* Levels of ab initio MO Theory.

Туре	φ	θ	ζ	ψ	ΔΕ	Type	φ	θ	ζ	ψ	ΔΕ
C _{7/9} ^I	-84.7			69.7	19.9	$\mathrm{C}_{5/7}^{\mathrm{III}}$	178.9			-178.2	82.1
	100.0	-69.3	-72.4	105.4			-91.0	-48.4	-50.5	-103.7	
	-84.3			82.9			177.4			-178.9	
	101.4	-66.7	-74.2	104.5			-92.1	-47.9	-50.1	-104.2	
	-83.2			84.4			176.8			-178.5	
	100.3	-64.9	-77.0	95.9			-91.8	-47.9	-50.1	-104.4	
	-85.2			69.6			176.5			-178.5	
	97.8	-66.5	-77.0	91.3			-91.2	-48.2	-50.3	-104.0	
5/7	178.7			175.9	36.4	$C_{7/7}{}^{I}$	-106.1			21.5	93.7
	178.7	-65.3	91.9	152.9			-130.3	-49.2	-42.8	-77.8	
	-179.6			-177.0			-83.9			66.0	
	-174.3	-65.6	94.0	144.9			-94.3	-60.5	-62.5	-81.1	
	179.8			-173.7			-115.8			25.9	
	-179.1	-65.4	86.5	168.5			-78.7	-47.8	-52.6	-94.1	
	-166.9			170.8			-88.9			63.1	
	167.5	-63.1	87.7	166.6			-83.8	-54.5	-58.3	-101.0	
II	-83.8			76.9	50.3	Co	-178.6			175.9	126.1
119	74.5	-161.0	69.6	15.7		- ,	75.3	-163.0	72.0	1.4	
	-82.7	10110	0,10	70.2			-74.8	10010	/	161.3	
	74.4	-160.9	72.3	7.1			79.2	-159.7	91.7	-35.1	
	-83.9	1001	, 2.3	72.1			-69.4	107.1	2117	150.0	
	75.7	-158 5	81.0	-11.6			74.6	-1593	754	-17	
	-84.8	-150.5	01.0	-11.0			-104 5	-157.5	75.4	-143.6	
	-04.0	-158.0	80.4	-8.4			-104.5	-163 3	68 3	13.0	
, III	-162.3	-150.0	00.4	174.0	50.3	$\mathbf{C} = \mathbf{v}^{\mathrm{V}}$	75.5 86 A	-105.5	00.5	-70.6	137.6
7/9	102.5	68.6	75 8	02.3	50.5	C7/9	43 O	53.0	156.8	-70.0	157.0
	86.8	-08.0	-75.8	68.0			45.0	55.0	-150.8	67.0	
	00.0	57.2	70.3	64.5			43.0	528	156 1	-07.5	
	99.9	-37.2	-19.3	71.0			45.1	52.8	-130.1	66.8	
	-65.5	64.6	77 4	/1.0 01.4			03.0 13.7	52 5	156 /	-00.8	
	90.9	-04.0	-//.4	91.4			45.7	52.5	-130.4	66.0	
	-00./	(\mathcal{D})	80 2	140.9			85.0	52.0	150 0	-00.0	
, П	97.1	-02.0	-80.2	/0.1	(0,2)	C	4/./	52.0	-158.2	170.2	140.0
-5/7	-1/2.3	76.0	(2.2)	1/5.5	60.3	C_5	1/9./	(2,2)	172.0	1/9.3	140.0
	-111.5	-/0.9	02.2	95.0			83.9	02.3	1/3.0	141.1	
	102.5	747	70.2	-100.0			-1/9.2	(2,2)	172.0	1/9.0	
	-114.0	-/4./	/8.3	125.7			83.8	62.2	1/3.0	139.9	
	-166.4	77.0	(0.0	168.0			-1/9.8	(2,2)	172.0	1/9.3	
	-112.0	-//.3	69.8	105.0			83.0	62.3	1/3.2	139.8	
	168.2	< - 1	00 0	-172.6			-1//.4	(1.0	150.0	179.0	
. IV	-163.8	-65.4	90.3	151.8		a	83.6	61.8	172.2	138.4	
7/9	-85.6	60 8	1.4.0	56.2	76.1	C_7	-87.0	()	o - (63.0	142.3
	81.7	60.2	164.8	50.3			164.8	-62.8	87.6	53.4	
	-87.5	_		63.3			-88.4			59.2	
	71.3	56.9	178.1	75.5			161.0	-60.7	88.7	55.3	
	-86.4			60.3			-89.8			61.3	
	40.2	49.0	-159.9	63.2			159.4	-60.8	85.2	56.0	
	-91.7			61.2			-85.3			65.0	
	72.7	57.3	173.1	56.3			84.1	-78.0	79.6	-157.6	
In deg	grees, se	e struc	ture for	mula 1	in Figure	e 1 in the	article.	" In kJ/	/mol, re	ferred to	o struc

Table 5. Backbone Torsion Angles^a and Relative Energies^b of Selected α , γ -Hybrid Peptide Octamers with Nearest Neighbor Hydrogen Bonds at the HF/6-31G* Level of ab initio MO Theory.

Туре	φ	θ	ζ	ψ	ΔΕ	Туре	φ	θ	ζ	ψ	ΔΕ
C _{8/9} ^I	-108.3	71.6		10.2	25.21	$C_{8/9}^{III}$	-72.4	133.1		-65.8	85.88
	100.5	-68.6	-74.2	96.3			99.6	-68.8	-75.0	97.0	
	-109.0	67.5		19.6			-73.6	131.5		-64.4	
	102.2	-67.4	-74.6	99.2			99.7	-68.5	-75.1	96.4	
	-108.6	64.7		23.9			-73.7	131.3		-64.2	
	101.1	-67.1	-75.9	97.2			99.8	-68.7	-75.1	96.6	
	-109.0	67.1		16.0			-73.7	132.6		-64.9	
	98.6	-67.9	-76.3	91.8			100.5	-69.8	-74.9	100.7	
$C_{8/9}^{II}$	111.4	-61.6		-22.5	62.53	$C_{8/9}^{IV}$	72.8	-132.8		65.0	89.35
	95.2	-76.6	-67.4	108.8			98.3	-69.1	-75.1	96.8	
	108.7	-64.8		-16.7			71.5	-131.1		63.5	
	97.9	-71.8	-72.6	100.0			98.3	-68.8	-75.1	96.3	
	107.8	-65.2		-15.9			71.5	-131.1		63.5	
	97.8	-74.6	-70.6	105.0			98.3	-68.9	-75.1	96.5	
	108.4	-61.7		-22.5			71.4	-132.5		64.7	
	100.1	-71.2	-75.1	102.4			98.8	-70.2	-74.7	100.5	
C _{6/7} ^I	120.3	64.1		161.3	74.14						
	178.1	-65.4	89.0	163.5							
	125.9	63.7		156.1							
	177.9	-65.6	88.5	163.4							
	130.8	63.7		152.8							
	176.8	-65.4	88.2	164.7							
	129.2	63.7		155.1							
	176.5	-65.4	88.2	165.7							
^a In des	grees, se	e struct	ure for	nula 1	in Figure	1 in the a	article.	^b In kJ/1	mol. ref	ferred to	structure
H _{18/20} .	,,				0				- ,		

Table 6. Backbone Torsion Angles^a and Relative Energies^b of Selected β , γ -Hybrid Peptide Octamers with Nearest Neighbor Hydrogen Bonds at the HF/6-31G* Level of ab initio MO Theory.