Angewandte amome

Supporting Information

for
Angew. Chem. Int. Ed. Z53249
© Wiley-VCH 2003
69451 Weinheim, Germany

Mixed Helices - A General Folding Pattern in Homologous Peptides?

Carsten Baldauf, Robert Günther and Hans-Jörg Hofmann

Table S1: Backbone torsion angles ${ }^{[a]}$ of the mixed helix $\mathbf{H}_{14 / 16}$ and the 3_{10}-helix $\left(\mathbf{H}_{\mathbf{1 0}}\right)$ in hexamers of α-peptides at the HF/6-31G* and DFT/B3LYP/6-31G* level of ab initio MO theory

Type ${ }^{[b]}$	HF/6-31G*		B3LYP/6-31G*	
	φ	ψ	φ	ψ
\mathbf{H}_{1416}	85.5	-75.2	81.4	-72.1
	-73.6	131.1	-73.6	129.9
	81.1	-66.6	78.6	-67.6
	-80.8	84.5	-76.7	80.2
	121.7	-73.2	123.7	-78.1
	-81.4	82.2	-76.6	78.4
$\mathbf{H}_{10}^{[c]}$	-67.1	-25.5	-65.6	-25.2
	-62.9	-19.5	-59.6	-19.9
	-63.0	-20.1	-60.6	-20.0
	-64.4	-18.3	-61.6	-18.7
	-68.6	-12.9	-67.2	-10.7
	-94.5	-4.8	-100.2	11.3

[a] Angles in degrees. [b] $\mathbf{H}_{\mathbf{x} / \mathbf{y}}$ denotes mixed helices with alternating rings with x and y atoms, respectively, closed by hydrogen bonds. $\mathbf{H}_{\mathbf{x}}$ denotes periodic helices with rings of x atoms. [c] 3_{10}-helix.

Table S2: Backbone torsion angles ${ }^{[a]}$ of mixed and periodic helices in hexamers of β-peptides at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ and DFT/B3LYP/6-31G* level of ab initio MO theory

Type ${ }^{[b]}$	HF/6-31G*		B3LYP/6-31G*		
	φ	$\theta \quad \psi$	φ	θ	ψ
$\mathbf{H}_{12 / 10}^{1}$	-97.7	56.696 .8	-97.6	54.7	96.1
	85.7	65.5-111.1	87.0	64.7	-109.4
	-101.8	61.488 .9	-103.0	58.7	88.0
	89.6	66.1-111.0	92.4	64.8	-107.8
	-101.1	$\begin{array}{lll}63.0 & 93.7\end{array}$	-104.2	61.8	93.5
	85.0	61.1-132.8	85.2	61.8	-124.3
$\mathrm{H}_{10 / 12}$	79.7	58.6-103.1	80.8	58.9	-97.6
	-16.2	$-54.6165 .2$	-21.3	-52.4	160.4
	87.4	$60.8-96.2$	90.8	59.1	-94.1
	-27.2	-49.6 160.0	-30.0	-47.8	155.0
	82.1	$67.6-93.8$	84.7	66.6	-94.2
	-73.3	$-60.7-86.7$	-73.6	-59.8	-85.8
$\mathbf{H}_{10112}^{11 / 2}$	-85.8	-58.5-67.2	-94.0	-56.6	-57.7
	-93.0	$56.1 \quad 80.6$	-94.8	54.2	77.4
	178.9	-61.8-20.8	-178.5	-60.6	-22.1
	-92.7	50.687 .0	-93.3	49.1	84.5
	177.2	-60.7-23.4	179.3	-59.2	-26.0
	-90.7	$52.0 \quad 90.8$	-90.5	51.4	87.5
\mathbf{H}_{20118}^{1}	75.7	57.4-162.3	75.8	53.1	-158.5
	-81.6	-79.3 137.8	-81.8	-81.8	136.1
	90.7	66.4171 .1	97.6	65.2	166.1
	-78.5	-56.8 148.6	-78.5	-49.3	145.9
	71.0	$74.6 \quad 173.9$	69.1	79.4	164.5
	-86.4	$-60.4165 .1$	-83.9	-56.4	162.2
\mathbf{H}_{20118}^{11}	76.7	61.3-168.2	76.1	59.1	-170.5
	-173.4	67.54 .9	-170.9	67.7	-3.5
	98.8	$\begin{array}{lll}66.8 & 172.7\end{array}$	110.5	66.7	163.9
	-150.2	56.647 .3	-138.1	55.5	49.3
	69.6	69.6-157.2	68.5	73.6	-155.9
	178.3	$57.4 \quad 91.1$	-179.9	53.8	105.2
$\mathbf{H}_{20118}^{1 \mathrm{II}}$	$80.5-176.7 \quad 143.2$		$81.5-172.6114 .3$		
	62.2	43.6-106.6	57.7	43.6	-103.1
	152.5	162.469 .1	141.3	166.1	70.7
	72.9	51.7-143.9	73.6	51.0	-145.4
	168.9	159.476 .7	169.7	159.3	74.4
	77.0	54.1-145.7	80.0	50.9	-144.8
$\mathbf{H}_{182 \mathrm{l}}^{\mathrm{V}}$	77.1	159.586 .9	80.1	159.4	75.7
	101.7	-54.7-85.3	105.1	-56.6	84.0
	79.3	-170.7 99.7	77.0	-168.1	102.0
	109.6	-47.5-43.0	105.7	-49.8	-35.0
	84.0	$170.8 \quad 73.3$	83.9	169.3	75.9
	111.6	$-56.7-32.3$	107.3	-57.6	-28.8

Table S2 continued:

Type ${ }^{[b]}$	HF/6-31G*		B3LYP/6-31G*		
	φ	ψ	φ	θ	ψ
H_{14}	-146.6	62.6-119.4	-136.3	62.7	-119.5
	-156.2	62.3-127.1	-152.1	63.4	-129.8
	-148.3	60.7-137.5	-144.9	61.6	-137.4
	-135.3	60.1-143.2	-133.7	61.3	-143.6
	-130.9	58.3-138.5	-129.9	58.5	-138.2
	-135.3	64.5-160.3	-132.9	63.7	-154.3
H_{12}	-97.2	$80.2-106.8$	-92.5	81.7	-111.7
	-80.4	93.6-118.2	-90.0	95.6	-117.5
	-86.9	92.1-108.5	-90.7	93.9	-99.8
	-87.2	$91.0-107.9$	-91.8	89.0	-99.1
	-87.3	92.0-108.9	-90.0	91.2	-102.3
	-83.8	88.6-107.9	-84.4	86.5	-103.7
a] Angles in degrees. [b] $\mathbf{H}_{\mathbf{x} / \mathrm{y}}$ denotes mixed helices with					
alternating rings with x and y atoms, respectively, closed by					
hydrogen bonds. $\mathbf{H}_{\mathbf{x}}$ denotes periodic helices with rings of x					

Table S3: Backbone torsion angles ${ }^{[a]}$ of mixed and periodic helices in hexamers of γ-peptides at the HF/6-31G* and DFT/B3LYP/6-31G* level of ab initio MO theory

Type ${ }^{[b]}$	HF/6-31G*				B3LYP/6-31G*			
	φ	θ	ζ	ψ	φ	θ	ζ	ψ
$\mathbf{H}_{14 / 12}^{1}$	-92.8	78.2	-74.4	162.4	-96.9	78.0	-70.7	154.9
	95.8	81.0	-74.5	-29.9	105.1	76.7	-78.4	-24.5
	-91.1	79.4	-79.5	161.5	-94.1	80.3	-76.1	154.0
	94.4	84.4	-72.8	-29.2	101.1	82.4	-75.0	-26.9
	-96.2	81.4	-79.7	164.7	-101.2	82.9	-76.4	158.2
	85.3	76.9	-53.7	-87.5	89.2	73.6	-55.5	-92.1
$\mathbf{H}_{14 / 12}^{11}$	77.1	58.4	-84.3	-79.2	78.4	61.1	-77.0	-90.9
	-71.2	-36.2	-56.4	142.6	-66.6	-31.1	-56.8	144.5
	65.4	56.2	-125.6	-53.1	59.7	54.8	-130.5	-48.0
	-63.8	-37.0	-60.5	142.5	-60.8	-37.7	-59.6	139.4
	68.4	55.6	-121.9	-58.5	67.3	54.9	-122.8	-55.2
	-65.6	-34.8	-52.5	157.0	-63.8	-37.1	-51.0	152.6
$\mathbf{H}_{24 / 22}^{1}$	108.9-172.5-169.1-153.4				$104.9-173.8-168.2-154.5$			
	-101.774.2	63.5	-94.4 122.2		-98.6	65.1	-93.4	117.7
		-176.5	-79.7-167.7		75.2-174.8		$\begin{aligned} & -76.6 \\ & -74.7 \end{aligned}$	-169.8
	-125.1	61.8	-77.2	154.3	-123.6	61.3		154.4
	115.5	-176.9	-177.3	-138.0	114.9	-171.7	-177.3	-137.3
	-160.0	66.9	-74.9	152.9	-158.7	66.5	-72.9	155.3
$\mathbf{H}_{24 / 22}^{11}$	79.3	66.6	-66.3	-80.3	83.4	61.5	-65.6	-79.8
	$\begin{aligned} & 84.3 \\ & 93.6 \end{aligned}$	69.4	74.8	9.7	85.2	66.3	75.5	7.3
		79.3	-65.5	-102.1	102.1	74.7	-66.1	-105.4
	122.9	64.4	66.2	16.2	129.3	65.3	66.5	16.0
	74.5	74.4	-73.8	-76.6	71.7	73.9	-72.3	-84.3
	75.2	83.9	65.9	70.5	73.2	84.2	64.5	80.6
$\mathbf{H}_{24 / 22}^{\text {II }}$	128.9	-64.9-178.8		104.8	120.4	-65.9	179.4	97.8
	-75.1	-63.0	80.5	29.3	-68.0	-62.6	83.0	17.6
	116.7	-68.4	-173.7	127.5	128.9	-69.7	-174.9	128.9
	-89.1	-71.9	82.8	57.7	-93.9	-68.2	85.8	52.3
	103.6	-65.7	-173.2	124.3	104.8	-64.1	-171.8	127.2
	-80.4	-74.0	58.5	87.2	-81.6	-72.4	58.3	97.4
H_{14}	106.1	-62.6	-67.5	165.6	106.1	-62.6	-67.5	165.6
	136.5	-63.2	-68.2	138.3	136.5	-63.2	-68.2	138.3
	138.0	-60.1	-65.1	141.4	138.0	-60.1	-65.1	141.4
	132.9	-61.0	-66.0	144.4	132.9	-61.0	-66.0	144.4
	135.3	-63.4	-66.7	143.0	135.3	-63.4	-66.7	143.0
	138.3	-61.0	-64.1	139.7	138.3	-61.0	-64.1	139.7

[a] Angles in degrees. [b] $\mathbf{H}_{\mathbf{x} / \mathrm{y}}$ denotes mixed helices with alternating rings with x and y atoms, respectively, closed by hydrogen bonds. $\mathbf{H}_{\mathbf{x}}$ denotes periodic helices with rings of x atoms.

Table S4: Backbone torsion angles ${ }^{[a]}$ of mixed and periodic helices in hexamers of δ-peptides at the HF/6-31G* and DFT/B3LYP/6-31G* level of ab initio MO theory

Type	HF/6-31G*					B3LYP/6-31G*				
	φ	θ	ζ	ρ	ψ	φ	θ	ζ	ρ	ψ
$\mathbf{H}_{14 / 16}^{1}$	-80.2	152.4	-74.0	-69.8	118.0	-80.8	154.6	-70.2	-69.0	112.9
	80.8	73.5	-165.9	70.6	-107.9	81.6	74.9	-162.7	70.6	-107.6
	-171.7	159.1	-77.3	-68.1	130.5	-172.2	158.8	-76.5	-69.3	132.4
	75.9	68.6	-167.5	82.1	-125.8	76.9	67.3	-166.8	81.6	-126.7
	-145.8	89.0	-70.9	-69.6	162.7	-141.8	87.6	-68.8	-70.0	167.9
	70.7	63.1	-165.3	71.9	-121.2	67.5	61.6	-160.1	71.0	-111.3
$\mathbf{H}_{16 / 14}^{11}$	111.7	-46.4	-59.6	152.0	151.4	108.9	-45.3	-58.5	151.3	147.0
	-120.5	83.9	-66.9	-65.0	161.8	-117.3	85.1	-65.2	-65.0	163.0
	113.4	-53.8	-62.3	167.4	158.7	111.8	-53.6	-59.8	169.9	153.5
	-125.9	82.3	-65.9	-67.4	164.4	-122.1	82.9	-64.3	-67.7	164.1
	113.3	-52.6	-63.3	164.6	157.8	112.7	-52.4	-59.9	167.4	150.8
	-12.1	-153.3	101.1	-5.7	-80.9	-6.0	-153.9	101.2	-5.5	-81.2
H_{10}	97.3	-62.8	-68.2	169.2	-86.1	96.9	-61.2	-67.0	166.	-84.8
	97.9	-62.6	-68.3	168.6	-84.7	97.9	-61.3	-67.0	166.5	-84.1
	98.1	-62.4	-68.4	168.5	-84.5	98.0	-60.9	-67.4	166.2	-83.6
	98.2	-62.4	-68.4	168.4	-84.4	98.3	-61.0	-67.3	166.1	-83.9
	98.3	-62.4	-68.4	168.7	-84.5	98.2	-61.1	-67.7	166.3	-83.0
	99.0	-62.6	-68.8	168.7	-87.1	98.8	-61.2	-67.8	167.1	-85.5
H_{8}	-178.8	66.5	-143.5	69.1	-171.2	-178.4	64.5	-139.6	68.5	-171.5
	-179.0	66.4	-142.5	69.2	-172.7	-179.1	64.2	-138.6	68.4	-172.5
	-179.5	66.4	-142.2	69.1	-172.5	-179.3	64.2	-138.1	68.3	-172.1
	-179.3	66.4	-142.2	69.2	-172.9	-178.7	64.2	-138.0	69.0	-173.1
	-179.4	66.4	-142.5	69.3	-173.1	-179.2	64.6	-138.8	68.4	-172.9
	-178.7	66.6	-143.9	69.7	-173.8	-178.4	64.7	-140.0	69.0	-173.9

[a] Angles in degrees. [b] $\mathbf{H}_{\mathbf{x} / \mathrm{y}}$ denotes mixed helices with alternating rings with x and y atoms, respectively, closed by hydrogen bonds. $\mathbf{H}_{\mathbf{x}}$ denotes periodic helices with rings of x atoms.

Table S5: Total energies ${ }^{[a]}$ of periodic helices used as references for the calculations of stabilisation energies at the HF/6-31G*, DFT/B3LYP/6-31G* and PCM//HF/6-31G* level of ab initio MO theory

	E_{T}		
Type	$\mathrm{HF} / 6-31 \mathrm{G}^{*}$	$\mathrm{~B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}$	$\mathrm{PCM} / / \mathrm{HF} / 6-31 \mathrm{G}^{*}$
		α-Peptides	
$\mathbf{H}_{\mathbf{1 0}}$	-1487.918103	-1496.607967	-1487.945670
		β-Peptides	
$\mathbf{H}_{\mathbf{1 4}}$	-1722.127594	-1732.493651	-1722.147167
$\mathbf{H}_{\mathbf{1 2}}$	-1722.132691	-1732.503571	-1722.138542
		γ-Peptides	
$\mathbf{H}_{\mathbf{1 4}}$	-1956.361656	-1968.407950	-1956.340687
		δ-Peptides	
$\mathbf{H}_{\mathbf{1 0}}$	-2190.562661	-2204.282712	-2190.528328
$\mathbf{H}_{\mathbf{8}}$	-2190.555385	-2204.271987	-2190.543623

[a] In a.u.

