Alumina surfaces are ubiquitous in a wide variety of engineered applications and, despite being relatively uncommon in the environment, are thought to have similar surface chemistry to omnipresent aluminosilicates. In virtually all technological systems, and all environmental, these surfaces interact with water, typically dramatically changing their properties. Thus motivated, decades of study have been devoted to understanding the reactivity of, particularly the most thermodynamically stable, α-Al2O3(0001) surface with water but molecular level understanding has proven surprisingly elusive. In our previous paper on this surface we had, somewhat accidentally, found that employing a supersonic molecular beam dramatically increases the probability of water dissociation on this surface. Sophia’s work simulating the dosing the α-Al2O3(0001) surface with water molecules using a supersonic molecular beam explores the origin of this effect. Among other results she finds, at least at low coverages, that a particular minimum value of translation kinetic energy, significantly enhances dissociation, consistent with prior calculation and theory. But there’s more to the story and it’s great. If you’re at all interested you should just read the paper,  just accepted for publication in Journal of Physical Chemistry C.