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A B S T R A C T

The structure of a thin MoO3 layer on Au(111) with a c(4 × 2) superstructure was studied with LEED I/V
analysis. As proposed previously (Quek et al., Surf. Sci. 577 (2005) L71), the atomic structure of the layer is
similar to that of a MoO3 single layer as found in regular a-MoO3. The layer on Au(111) has a glide plane
parallel to the short unit vector of the c(4 × 2) unit cell and the molybdenum atoms are bridge-bonded
to two surface gold atoms with the structure of the gold surface being slightly distorted. The structural
refinement of the structure was performed with the CMA-ES evolutionary strategy algorithm which could
reach a Pendry R-factor of ∼0.044. In the second part the performance of CMA-ES is compared with that of
the differential evolution method, a genetic algorithm and the Powell optimization algorithm employing I/V
curves calculated with tensor LEED.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Molybdenum ptis extensively used as a key component in mixed
oxide catalysts like for instance iron-molybdate catalysts for the
selective oxidation of methanol to formaldehyde [1]. It is assumed
that Mo sites play a relevant role for the reactivity of these sys-
tems, but many questions regarding the active sites and the reaction
mechanism are still open at present [1]. Pure MoO3 exhibits good
activity for several reactions like the partial oxidation of methanol to
formaldehyde [2] and the partial oxidation of propene [3].

The reactivity of large aggregates will usually be different from
that of systems with a small extension in one or more dimensions
like clusters or thin films [4,5]. In such cases surface or interface
atoms contribute significantly to the overall properties of the sys-
tem, which has a strong effect on the electronic and geometric
structure and thus onto the reactivity. Having the peculiarity of
systems with a reduced dimensionality in mind, well-ordered mono-
layer thick MoO3 islands have been prepared on Au(111) some years
ago by Friend and co-workers [6,7,8,9]. Guided by computations,
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LEED (low-energy electron diffraction) and STM (scanning tunnel-
ing microscopy) results the authors concluded that the structure of
the layers is similar to that of a single layer of a-MoO3. Regular
a-MoO3 consists of pairs of such layers weakly interacting with the
neighboring double layers via van der Waals forces.

In the context of studies of thin well-ordered a-MoO3 layers on
Au(111) [10] we prepared monolayer thick films which exhibit the
same LEED pattern as the layers prepared by Friend et al. [6,7,8,9].
These layers were studied with TDS (thermal desorption spec-
troscopy), XPS (X-ray photoelectron spectroscopy) [10], NEXAFS
(near-edge X-ray absorption fine structure spectroscopy) and DFT
(density functional theory) modeling of the NEXAFS spectra [11]. The
I/V LEED (LEED spot intensity analysis) investigation discussed in this
publication was started in order to verify or improve the structural
data of Friend et al. [8], and thus to provide an improved structural
input for DFT modeling. The I/V LEED structural optimization was
performed with an evolutionary strategy algorithm, CMA-ES (covari-
ance matrix adaption evolutionary strategy) [12], employing fully
dynamical LEED I/V computations. This approach works well but
is computationally expensive. CMA-ES is a population based robust
local optimization method with a limited global optimization capa-
bility. In this context the question came up, how the performance of
this method compares with that of other search methods used for
I/V-LEED structure optimization methods. Therefore in the second
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part of this manuscript the performance of CMA-ES is evaluated and
compared with that of two other population-based search meth-
ods: differential evolution (DE) [13] and a genetic algorithm (GA)
as common global optimization methods, and with the local Powell
optimization method based on tensor LEED computations.

2. Experimental

The measurements were performed in a chamber which con-
tained a LEED system for I/V LEED measurements and sample char-
acterization, Helmholtz coils for magnetic field compensation, a
high-pressure cell for pressures of up to 1 bar, an electron-beam
metal evaporator for the deposition of molybdenum, a sputter gun
for sample preparation, a quadrupole mass spectrometer for residual
gas analysis and thermal desorption spectroscopy, and a manipulator
with a sample holder on which the sample was mounted. The LEED
system was equipped with a channel plate electron multiplier com-
bined with a phosphorous screen which permitted to record LEED
images with small electron beam currents. Primary electron currents
of some nA were sufficient to generate a reasonably intense LEED
pattern. Low currents are important when sensitive materials like
oxides are investigated since oxides may suffer from electron beam
induced damage. A set of Helmholtz coils was mounted such that
a homogeneous horizontal magnetic field could be produced which
was adjusted to compensate the earth magnetic field at the position
of the sample. The magnetic field perpendicular to the path of the
incident electrons must be very weak for I/V LEED measurements,
since the incoming electrons have to impinge onto the sample along
a direction which deviates from the surface normal by not more
than a few tenth of a degree for all energies. Complete compen-
sation of the magnetic field would have required an additional set
of Helmholtz coils to also compensate the vertical earth field com-
ponent. However, due to space constraints such coils could not be
mounted. In order to minimize the effect of the non-compensated
vertical magnetic field component, I/V LEED curves for high and
low electron energies were recorded with slightly different sample
alignment angles and matched in the overlapping energy range.

The need for perpendicular beam incidence required that the
surface normal of the sample could be tilted, which was achieved
by mounting the sample manipulator on a tilt mechanism, such
that the whole manipulator could be tilted. The sample orientation
was adjusted by minimizing the difference between I/V curves of
symmetry-equivalent LEED spots.

The first step of the experimental determination of the I/V curves
was the measurement of LEED patterns as a function of the electron
energy with a step size of 1 eV, which was done with a commer-
cially available software from OCI Vacuum Microengineering Inc. The
I/V curves were derived from these images with a program which is
able to perform spot-tracking and to integrate the intensity in a cir-
cular area around the spot maxima with sub-pixel accuracy. The I/V
curves obtained this way were normalized to the beam current and
subjected to a Sawatzky-Golay smooth of 2nd or 4th order depend-
ing on the noise of the data, followed by subtraction of a smooth
background.

The Au(111) substrate was fixed on a molybdenum plate by two
Mo sheets which were fitted into slits at the sides of the crystal. With
these sheets the sample was pressed towards the molybdenum plate
to provide a good thermal contact and a well-defined position. The
sample could be heated by electrons emitted from a glowing fila-
ment behind the plate if high voltage was applied to the plate or just
by heat radiation from the filament if no high voltage was applied.
Cooling with liquid nitrogen was possible by filling the hollow rod,
on which the sample holder was mounted, with liquid nitrogen. A
temperature of 110 K could be reached with this setup. At this tem-
perature the I/V LEED curves were measured since the background

intensity in LEED patterns is smaller at low temperature, which is
especially true for gold due its small Debye temperature. For tem-
perature measurement a K type thermocouple was attached to the
Au(111) sample.

Standard sputtering/annealing sequences were employed to
clean the Au(111) sample with the surface quality being judged
from the quality of the LEED pattern. The MoO3 layer was prepared
according to a procedure described in reference [10]. In the first step
0.5 MLE of molybdenum was deposited onto the Au(111) sub-
strate (1 MLE

∧
= 1 atom per gold surface atom) with a Mo flux of

0.2 MLE/min as calibrated with a quartz micro balance After this,
the sample with the Mo layer was transferred into a high-pressure
cell where the layer was oxidized for 10 min at 673 K in a stream
of oxygen with a pressure of 50 mbar. Heating in the high-pressure
cell was performed with a commercial halogen lamp equipped with
a focusing gold mirror. During heating the sample was positioned
into the focus of the mirror. After the end of the preparation pro-
cedure the lamp was switched off and the high-pressure cell was
evacuated when the sample had reached a temperature of 373 K.
Finally the sample was transferred back into the measuring chamber
where a well-defined c(4 × 2) LEED pattern with sharp spots could
be observed.

3. Computational

The LEED intensity computations were performed with the
Barbieri/Van Hove Symmetrized Automated Tensor LEED (SATLEED)
package [14]. For optimization runs employing CMA-ES [12], differ-
ential evolution [13] and the genetic algorithm the SATLEED package
was modified such that the calculated amplitudes of the diffracted
beams were outputted and computations related to tensor LEED
were skipped. Tensor LEED optimization runs were performed with
the non-modified SATLEED package using the Powell optimization
method as implemented in this package.

The agreement between the computed and the measured curves
was quantified by the reliability factor (R-factor) defined by
Pendry [15] (RP). Smaller R-factors mean better agreement with a
value of zero indicating that the compared curves are identical. In IV-
LEED studies R-factors below ∼0.2 are usually considered to indicate
that the model structure is similar to the real one. In the CMA-
ES, the DE and the GA optimization runs the R-factor computation
and the refinement of the structure by minimization of the R-factor
was performed by a C++ program with the experimental data and
the amplitudes of the diffracted beams computed by the modified
SATLEED package as input. The program is able to subtract a lin-
ear or constant background from the experimental data, which was
adjusted together with the other optimization parameters to mini-
mize the R-factor. This was done in order to (partially) compensate
for errors made in the initial background subtraction procedure. In
the present case a linear background was subtracted. The required
phase shifts were computed with the phase shift program accom-
panying the SATLEED package (see supplemental material, Fig. SI5).
The highest angular momentum value considered in the computa-
tions was Lmax = 9. I/V curves were computed for an energy range
from 60 to 400 eV with a 1 eV energy step width. For the calculation
exploring the convergence ranges of the different methods Lmax was
set to 7, a constant background was optimized and the energy step
width was set to 1.5 eV. In the case of the Powell method/tensor LEED
optimization runs the R-factor routine implemented in the SATLEED
package was used.

Finding the structure with the smallest difference between the
computed I/V curves and the measured ones is essentially an opti-
mization problem. In I/V LEED, an algorithm trying to find the
structure under investigation will usually vary the coordinates of the
atoms in a trial structure and possibly some other parameters like
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Fig. 1. Schematic representation of the implemented crossover schemes for the genetic algorithm.

vibrational amplitudes and the inner potential in order to minimize
the difference between the measured I/V curves and the I/V curves
calculated for the trial structure. The parameters span a search space
with a dimension equal to the number of parameters, and the volume
equal to the product of the parameter variation ranges (V =

∏D
i=1 Yi

with Yi being the variation range of parameter i and D the number
of parameters).

The R-factor which maps a parameter vector to a real number
(RD → R) defines a hyper surface in this space, and the optimization
algorithm has to find the deepest minimum, the global minimum,
of this surface. In general this hyper surface will not just have one
minimum but many of them. Only one of them, the deepest one, is the
desired global minimum and the other ones, the local minima, have
to be disregarded by the search algorithm. The number of minima
increases with the volume of the search space, such that a vast number
of local minima may be expected for high-dimensional problems and
large parameter variation ranges. A safe method to find the global
minimum is a grid search on a sufficiently densely spaced grid in
the search space. However, this is computationally too demanding in
most cases, especially for high-dimensional problems, and therefore
the search problem is usually made manageable by two measures:

1. Use of an appropriate search method.
Search algorithms are usually designed such that minima
on the hyper surface are attractive which means that the

algorithm will try to adjust the parameters such that the R-
factor approaches the minimum. This applies to local and global
minima, and therefore the problem of identifying the global
minimum is not necessarily solved by this approach.
The multitude of such search methods may roughly be divided
into local and global methods. If a local method starts the
search in the convex area around a minimum, then it will just
find this minimum and no other one. Therefore a good approx-
imate knowledge of the location of the global minimum is
required for the application of a local method. Global methods,
on the other hand, promise to find the global minimum also
from search starting points, which are not near to the global
minimum. However, in real life it may take an unacceptably
long time to find the global minimum with such a method from
a search start point far away from the global minimum, and at
least temporary trapping of the search in local minima may be
expected. Therefore, even if global methods are applied it is rel-
evant to start the search from a point not too far away from the
global minimum. In general global search methods converge
much slower than local ones.

2. Restriction of the search space.
The search is confined to a sub-space of the whole parame-
ter space in which the parameter set of the structure to be
found is probably located. Such a sub-space is usually identified
by chemical/physical intuition, possibly by assuming that the
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Fig. 2. LEED pattern of c(4 × 2) MoO3/Au(111). Ep = 45 eV. The image was digitally
enhanced by variation of contrast and brightness in order to make sure that all spots
are clearly visible.

structure of the system under investigation is similar to that
of another system with a known structure. A further reduction
of the search space volume can be achieved by ignoring model
structures with unphysical atomic distances. Also, proper con-
sideration of the the symmetry is relevant since this usually
reduces the dimension of the search space.

For the calculation of I/V curves, which are required for the com-
putation of the R-factor, the tensor LEED approximation may suffice
in many cases, but there are situations where R-factors calculated
from tensor-LEED I/V curves exhibit significant errors even at a point
not far away from the point for which the reference calculation
was performed (see Fig. SI1 in the supplemental material, espe-
cially curve c in the upper panel). To avoid this issue the tensor
LEED approximation was not used for optimization runs employing
global search methods. In these cases fully dynamical LEED calcu-
lations were performed for all points in the search space where
the search algorithm required the computation of a R-factor. This
is computationally much more demanding than tensor LEED, but
parallel calculations on state-of-the-art compute clusters make this
approach feasible. The tensor LEED approximation was only used for
optimization runs employing the Powell method as implemented in
the SATLEED package in order to get a clue on the performance of
tensor LEED based local optimization in comparison with the other
methods.

A large subset of the set of global optimization methods involves
the optimization of a set of trial solutions. A large subset of these
methods, the evolutionary strategies and the genetic algorithms,
is inspired by the evolution of species in nature (“survival of the
fittest”), which can be understood as an optimization process. As
such, the set of trial structures is called population in these meth-
ods and the algorithms try to optimize the fitness of this population.
Each individual is defined by its genome, which in the present case
is simply a parameter set describing a trial structure for I/V LEED
calculations, possibly plus some non-structural parameters as dis-
cussed later. Therefore, the population of individuals is essentially a
population of trial structures. The individuals have a fitness which is
calculated from the R-factor of the trial structures: the smaller the
R-factor the better the fitness of the individual.

Three population-based search methods were employed: CMA-
ES, DE and a real-valued GA. The GA is called real-valued because the

Fig. 3. Simulated LEED pattern of c(4 × 2) MoO3/Au(111). For the simulation the
LEEDpat3 software [25] was used. Red, blue and green arrows and circles illustrate
reciprocal unit vectors and LEED spots of different domains of the overlayer, while the
Au(111) reciprocal unit vectors and LEED spots are drawn in white. The black circle
marks the area of the LEED pattern shown in Fig. 2. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

genome consists of real numbers in the present case. For CMA-ES the
Shark library [16] was used while the GA and DE codes were pro-
gramed by the authors. The I/V curve computations for the individu-
als of the population were performed in parallel on a multi-processor
system which reduced the computation time (but not the overall
computational effort) significantly. Genetic algorithms have been
employed before for LEED structural optimization [17,18,19,20], like
differential evolution [21], and CMA-ES [22,23]. The methods are
derivative-free robust search methods, not very sensitive to discon-
tinuities and noise.

Population-based search methods try to optimize the fitness of
the population via production of offsprings, new individuals which
may join the population only if they are able to pass a certain selec-
tion scheme which is usually based on the offsprings fitness. The
genetic algorithm employs crossover and mutation operations for
the production of offsprings combined with selection mechanisms
which are designed to let individuals with a higher fitness survive
with a higher probability on the one hand, and to preserve a cer-
tain genetic diversity on the other hand. The crossover operations
combine the genomes of two individuals in certain ways to produce
offsprings with new genomes and the mutation operations produce a
new individual by modification of the genome of an individual of the
population. Selection operations delete genetic material, crossover
operations combine existing genetic material in a new way while
mutations produce new genetic material. Thus, the genetic diversity
within the population is defined by the balance of these operations.
In the implementation used here, selection of the individuals to
become parents and of the individuals to be replaced by offsprings
was performed by a tournament selection scheme [24] preferring
high fitness in the first case and low fitness in the second one.

The mutation and crossover operations of the GA are highly
dependent on random numbers which control many aspects of these
operations. In the present case the crossover operations ‘exchange of
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Fig. 4. Geometric structure of a-MoO3. (A): stacking of the double layers seen along [001]. (B): top view of a single layer (right half: without molybdenyl oxygen, left half: with
molybdenyl oxygen).

a random parameter between two individuals’, ‘exchange of param-
eters with 50% probability’, ‘one point crossover’ and ‘two point
crossover’ as visualized in Fig. 1 are implemented for the GA method.
The implemented mutation operations for the GA are:

• Change of a random gene by a random value calculated using a
Gaussian distribution.

• Change of a random gene by a random value calculated using a
uniform distribution.

• Change of a randomly selected block of genes along a random
direction in the search space with a distance calculated using a
Gaussian random distribution.

Mo

O

Au

Fig. 5. Graphical representation of the best-fit structure of a single layer of a-MoO3

on Au(111). The overlayer unit cell (square) and a glide plane (dashed line) are indi-
cated. In the bottom half of the image the optimized structure of the gold surface is
shown without the overlayer. The directions of the x and y axes as used in this text are
indicated.

For the computation performed in the context of this I/V LEED
study all listed crossover operations were executed with identical
probabilities, likewise the mutation operations.

Differential evolution [13] is a rather simple but effective popu-
lation based search scheme. In this method a set of next generation
(G+1) mutants MG+1

i is created from the individuals PG
i of the

population generation G according to

MG+1
i = PG

m + F ×
(

PG
l − PG

j

)
(1)

with i, m, l, j ∈ [0, NP] all different and m,l,j being integer random
numbers. NP is the number of individuals in the population and i is
a loop variable. F ∈ [0, 2] is a pre-selected constant factor which con-
trols the contribution of the difference PG

l − PG
j to the mutants. In the

next step a set of trial vectors TG+1
i is computed according to

TG+1
ij =

{
MG+1

ij if RRN < CR or i = IRN

PG
ij otherwise.

(2)

RRN ∈ [0, 1] is a real valued uniform random number which is
drawn anew for every vector component, IRN ∈ [1, D] is an integer

Table 1
Parameters of the structure with the smallest Pendry R-factor. Debye temperatures are
in Kelvin, the imaginary part of the inner potential is in eV and the coordinates are in Å.
The table at the top lists only data for symmetry-inequivalent atoms. The coordinates
of the bottom four atoms (Aulayer3 and Aulayer4) were set to the bulk positions and
kept fixed in the optimization run. They are listed here to provide a reference for the
coordinates of the atoms in the layers above.

Positions X Y Z X Y Z

Omolybdenyl −1.34 1.31 4.24 Mo −1.51 1.30 2.56

O(1)
bridging 0.00 2.66 2.41 O(2)

bridging −2.78 2.60 2.38

Au(1)
layer1 −0.71 −0.05 0.09 Au(2)

layer1 −2.03 2.62 −0.02

Au(1)
layer2 −0.74 1.67 −2.38 Au(2)

layer2 −2.16 −0.84 −2.37

Au(1)
layer3 −0.72 −1.66 −4.71 Au(2)

layer3 −2.16 0.83 −4.71

Au(1)
layer4 −0.72 0.00 −7.06 Au(2)

layer4 −2.16 2.50 −7.06

Other parameters Debye temperatures Inner potential (imag)

Mo O Au

421 382 137 4.74
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Fig. 6. Experimental data and calculated I/V curves for the structure with the smallest
R-Factor.

valued random number which is drawn once per individual with
D being the number of optimization parameters (=number of vec-
tor components). j ∈ [1, D] is a loop index running over all vector
components of the individuals. This procedure ensures that at least
one parameter in each trial vector stems from a mutant. CR ∈ [0, 1]
is a pre-selected constant which controls the degree of inclusion of
mutated genetic material into the population of trial vectors.

Finally the next generation of the population is produced by a
simple selection scheme — an individual in the population is replaced
by the corresponding trial vector if the fitness of the individual is
smaller than that of the trial vector and it is kept otherwise.

PG+1
i =

⎧⎨
⎩MG+1

i if Fitness
(

MG+1
i

)
> Fitness

(
PG

i

)
PG

i otherwise.
(3)

The parameters CR and F control the performance of the
algorithm — a large F will lead to mutants which differ significantly
from the original individuals PG

i while a small F produces mutants
which are similar to them. Therefore, F controls the extension of
the search space probed by the algorithm. A large F may lead to
an improved global search capability, but may also lead to dilution
of the population in the search space. The degree of acceptance of
mutated genetic material, and thus the diversity of the population,
increases with increasing CR, which therefore has a similar effect as
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Fig. 7. Pendry R-factor of the fittest individual as a function of the number of
generations for CMA-ES, differential evolution and the genetic algorithm.

an increasing F. The number of individuals also has an influence on
the probability of finding the global minimum in that a larger popu-
lation permits to sample the search space more thoroughly. For the
differential evolution algorithm it is suggested that the number of
individuals is between five and ten times the number of optimization
parameters [13], which would have been between 120 and 240 in
the present case. However, in order to keep comparability between
the computations for the differential evolution algorithm and for the
other methods, a population size of 20 was chosen, which, as will
be shown later is large enough to make differential evolution a very
competitive search algorithm.

In CMA-ES new individuals are produced exclusively by mutation.
The genomes of the newly produced individuals are realizations of a
multi-variate normal distribution which is defined by its covariance
matrix. The parameters of the normal distribution, the covariance
matrix, are adapted to the morphology of the R-factor hyper surface
in the search space covered by the population. Due to this a higher
convergence speed compared to that of the GA may be expected
since the latter method does not adapt its search strategy. The price
of adaption may be a somewhat smaller chance to escape from local
minima.

The parameters of the CMA-ES algorithm are the numbers of par-
ents (l) and offsprings (k) with k > l as well as the initial standard
deviations of the algorithm’s normal distributions which, in the cal-
culations leading to the results reported in the following, also define
the distribution of individuals in the initial population. Such nor-
mal distributions were also used to set up the initial populations for
GA and DE, and therefore their standard deviations were parame-
ters which had to be chosen also in these cases. In GA the numbers
of offsprings and parents had to be defined plus a number of other
parameters like the widths and types (uniform, normal) of the dis-
tributions used for the computation of the random mutation step
widths and parameters setting the selection pressure of the selection
schemes. For DE only the population size and the parameters F and
CR had to be supplied. The population size and the number of off-
springs were defined such that not too many processor cores were
needed for the optimization runs. 15–20 parallel computations per
generation appeared to be reasonable. The other parameters were
determined by test runs. However, GA has too many parameters for
a thorough optimization. Therefore single parameter optimization
test runs were performed for the most relevant parameters while
the other parameters were set to some reasonable values. Elitism,
which is the guaranteed survival of the individual(s) with the high-
est fitness was not applied in any search scheme since this leads to a
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Fig. 8. Number of converged runs (RP<0.1) out of seven differential evolution runs for different values of the parameters F, CR and s . The parameter D was set to 0.8 Å in all runs.

higher chance that the search gets trapped in a local minimum for a
prolonged time.

In order to avoid unnecessary computations, only structures with
the symmetry suggested by the LEED pattern were accepted as indi-
viduals. Another implemented constraint was that only trial struc-
tures were considered, where the spacings between the atoms were
larger than certain minimal distances. The minimum distances were
tabulated in a (3×3) matrix, such that different minimum spac-
ings could be considered for different pairs of the three atom types
(Au, Mo, O). The chosen minimal distances were inspired by known
atomic and ionic radii.

4. Results and discussion

4.1. Structure

An image of the MoO3 layer’s LEED pattern taken with electrons
with an energy of 45 eV is shown in Fig. 2. The oxide produces a
c(4 × 2) superstructure LEED pattern which is schematically illus-
trated in Fig. 3. The black circle indicates the area of the experimental
LEED pattern in Fig. 2. Due to the symmetry of the Au(111) surface
the oxide layer has three rotational domains which are shown in dif-
ferent colors in Fig. 3. An important difference between the scheme

in Fig. 3 and the LEED pattern in Fig. 2 is that the (0,1) type spots
are missing in the experimental LEED pattern. This indicates that
the overlayer domains have a glide plane along the direction of the
missing spots. As expected for a glide plane these spots do not show
up at any electron energy. However, they get visible if the crystal
is rotated by some degrees out of the glide plane which breaks the
glide plane symmetry. The spots of the herringbone reconstruction of
Au(111) [26] are not visible in the LEED pattern (Fig. 2), which shows
(1) that the reconstruction is lifted below the oxide layer due to the
Au(111)–MoO3 interaction and (2) that there are no large uncovered
substrate areas.

Quek et al. [8] have studied MoO3 islands on Au(111) with STM
and density functional theory. These islands exhibit a c(4 × 2) unit
cell with missing (0,1) type spots [7] like the layers discussed here.
Quek et al. [8] argued that the structure of the islands might be simi-
lar to that of half of a double layer in a-MoO3. The a-MoO3 structure
is illustrated in Fig. 4A, and B depicts the structure of a single layer
(i.e. half of a double layer). Such a layer can be positioned onto
Au(111) without much distortion such that a c(4 × 2) repeat unit
results.

I/V LEED structural optimization computations with the CMA-
ES optimization scheme were performed for a number of trial start
structures consisting of MoO3 single layers on Au(111) at different
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lateral positions on the substrate with the glide pane symmetry of
the arrangement preserved in all cases. The optimization runs con-
verged in most cases towards R-factors larger than 0.2, but for one
position of the oxide layer on the substrate a R-factor of ∼ 0.044 was
obtained. This small R-factor is a good indication that the structure
represented by this R-factor is the right one.

Fig. 5 illustrates the structure of the system with the smallest
R-factor. The Mo atoms are located on bridging positions on the
Au(111) surface and the oxygen atoms are arranged similar to the
positions they have in a single layer in a-MoO3. This is somewhat
different from the results obtained by Quek et al. [8] who found that
the Mo atoms are located in threefold hollow sites on the Au(111)
surface. In that case the layer had a quasi glide plane rotated by 90◦
with respect to the one shown in Fig. 5. In the present case the over-
layer glide plane matches a substrate glide plane. The system does
not have any mirror planes, and therefore the symmetry of the over-
layer is pg. The gold atoms in the two top layers which were included
in the optimization were found to be slightly displaced by distances
in the range of a tenth of an Ångstrøm.

For the LEED computations seven experimental I/V curves with
a total energy range of 1616 eV were considered. Each of these
curves is the sum of the intensities of symmetry-equivalent spots
which were summed up for the three different domains of the layer.
The experimental curves are shown in Fig. 6 together with the
computed curves for the structure with the smallest R-factor. The
parameters for the structural optimization process were the atomic
coordinates of all atoms of the overlayer and the first two gold lay-
ers (2 molybdenum atoms, 6 oxygen atoms, and 8 Au atoms per
c(4×2) unit cell). The presence of the glide plane reduces the num-
bers of independent atomic positions by a factor of two such that 24
structural parameters (8 atoms, each with 3 coordinate values) had
to be optimized. Further optimization parameters were the imag-
inary part of the inner potential and the Debye temperatures of
the three elements involved (Mo, O, Au), giving a total number of
28 optimization parameters. The best-fit parameters are listed in
Table 1.

4.2. Convergence speed of CMA-ES, differential evolution and the
genetic algorithm

This chapter compares the convergence speeds of CMA-ES, DE and
GA for the case of the MoO3 layer on Au(111) discussed in this text. In
the case of CMA-ES the number of individuals in the population and
the number of offsprings were set to 8 and 17, respectively, as sug-
gested for this number of parameters. In every next generation the
8 best offsprings replace the parents and become the new popula-
tion. Thus, for every generation 17 I/V curves had to be computed. In
the case of the genetic algorithm a population size of 30 was chosen.
In each generation 12 offsprings were produced by crossover and 3
by mutations. These were mixed into the new generation, replacing
15 parents. In this case 15 computations of I/V curves had to be per-
formed in every generation. The population size in the case of the DE
algorithm was set to 20, which is also the number of I/V curve calcu-
lations performed in every generation. Optimization of the imaginary
part of the inner potential and of the Debye temperatures was not
implemented in the case of the GA program and therefore these
parameters were set to the numbers given in Table 1. In order to
establish comparability between the methods this was also done in
the CMA-ES and differential evolution runs.

The Pendry R-factor of the fittest individual is plotted as a func-
tion of the number of generations in Fig. 7 for computations employ-
ing the CMA-ES method, differential evolution and the genetic
algorithm (the R-factor of the fittest individuals as a function of the
number of fully dynamical computation is shown in the supplemen-
tal material, Fig. SI2). The convergence speeds of the three methods
are different with the genetic algorithm being slowest and the two

other methods having somewhat similar performance with CMA-
ES being slightly faster. CMA-ES reaches a R-factor of less than 0.1
after 60 generations, differential evolution requires 129 generations
while the genetic algorithm needs 417 generations. Especially, the
genetic algorithm is very slow at high generation numbers where
the structural fine tuning takes place. Here complex small parame-
ter changes are required to approach the global minimum. This can
be done much better by CMA-ES which adapts the search strategy to
the local topography of the R-factor hyper surface and by DE due to
the contraction of the population in the search space near the global
minimum and the consequent reduction of the mutation distances.
Thus we conclude that search strategy adaption is relevant especially
for the final steps of the search. We note that mutation width adap-
tion according to a “20% of the mutated offsprings must be fitter than
their parents” rule as sometimes employed in evolutionary strategy
computations is able to increase the GA convergence speed signifi-
cantly, though it does not reach the performance of the two other
methods (not shown here).

A parameter which is relevant for the convergence speed and the
ability of a search method to find the global minimum is the integra-
tion of some kind of randomness into the search algorithm. All three
population based search methods discussed here make heavy use
of random number generators to produce new generations, which
introduces randomness into the populations. This permits to explore
remote search space areas, probably not explored without random-
ness. Individuals somewhat remote from the center of the population
can also help the search to escape from local minima. However, these
advantages have a price, a reduced convergence speed due to the
presence of these remote individuals. The randomness of CMA-ES
and DE adapts to the search space such that it is smaller near to a
minimum, i.e. the average mutation distances decrease. The impact
of randomness on the convergence speed is smaller for these meth-
ods than for GA where the mutation step width distributions, and
thus the randomness introduced by mutations, is constant, indepen-
dent of the local search space and the distribution of individuals
in the population, which is another reason for the observed lower
convergence speed of GA.

4.3. Accuracy

Different CMA-ES optimization runs (full parameter sets includ-
ing Debye temperatures and the imaginary part of the inner
potential) which were stopped after having reached R-factors below
0.05 gave Debye temperatures different by up to 30 K. The corre-
sponding spread of the imaginary part of the inner potential was in
the range of 0.3 eV. These numbers may give an impression of the
accuracy of the obtained Debye temperatures and the imaginary part
of the inner potential.

The spread of the coordinate values among the three methods
after 1000 iterations (R-factors = 0.0437, 0.0449 and 0.0661, see
Fig. 7) is Dx = 8.4 × 10−3Å,Dy = 5.7 × 10−2Å,Dz = 5.5 × 10−4Å.
For the other atoms the results are similar regarding size and order
of the differences (x medium, y largest, z smallest). These differences
shed some light onto the accuracy of the coordinates. The small dif-
ference of the z coordinate values is indicative of a good accuracy,
which may be traced back to the high sensitivity of the IV curves to
the z coordinates of the atoms due to the geometry of the experiment
with the primary beam traveling along the z axis and the diffracted
beams detected within only ±35◦ around the z-axis. The accuracy of
the horizontal coordinates is much smaller with the accuracy of the y
coordinate being smaller than that of the x-coordinate which may be
due to glide plane related absence of the (0,1) type spots. These could
therefore not be considered in the computations which reduces the
weight of the y coordinates in the R-factor computation.
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Table 2
Convergence properties of the CMA-ES algorithm (without optimization of Debye
temperatures and the imaginary part of the inner potential). Each double column lists
the number of runs out of seven runs which have reached a R-factor smaller than
the one given in the second row after 300 iterations (first column) and 600 iterations
(second column). For details see text.

CMA-ES s = 0.05 Å s = 0.1 Å

D [Å] RP < 0.1 RP < 0.15 RP < 0.2 RP < 0.1 RP < 0.15 RP < 0.2

0.2 7 7 7 7 7 7 7 7 7 7 7 7
0.3 5 5 5 5 6 6 7 7 7 7 7 7
0.4 6 6 6 6 6 6 7 7 7 7 7 7
0.5 4 4 4 4 4 4 4 4 4 4 5 5
0.6 1 1 1 1 1 1 3 3 3 3 3 3
0.7 3 3 3 3 3 3 2 2 2 2 3 3
0.8 0 0 0 0 0 0 0 0 0 0 1 1
S 26 26 26 26 27 27 30 30 30 30 33 33

CMA-ES s = 0.2 Å s = 0.3 Å

D [Å] RP < 0.1 RP < 0.15 RP < 0.2 RP < 0.1 RP < 0.15 RP < 0.2

0.2 3 3 3 3 3 3 1 1 1 1 1 1
0.3 0 0 0 0 0 0 0 0 0 0 0 0
0.4 1 1 1 1 1 1 0 0 0 0 0 0
0.5 0 0 0 0 2 2 0 0 0 0 0 0
0.6 1 1 1 1 1 1 0 0 0 0 0 0
0.7 0 0 0 0 1 1 0 0 0 0 0 0
0.8 0 0 1 1 1 1 0 0 0 0 0 0
S 5 5 6 6 9 9 1 1 1 1 1 1

4.4. Convergence ranges of CMA-ES, the genetic algorithm, differential
evolution and tensor LEED

A very relevant parameter of a search method is the probability of
finding the global minimum as a function of the distance between the
global minimum and the position from which the search is started.
A reasonable probability also for somewhat larger distances helps
to find the global minimum even if the first guess of the structure
is not very near to the real structure. In order to get an idea of the
probability of convergence towards the global R-factor minimum as
a function of the distance between the search starting point and the
global minimum, optimization runs were performed with start con-
figurations randomly distributed in sub-spaces with parameters Pi ∈
[Bi −Di/2 . . . Bi +Di/2] centered around the best-fit atomic configu-
ration with parameters Bi. For Di = D, i.e. all Di set to the same value
this leads to a distribution of euclidic distances between the start
structures and the global minimum with a well-defined probability
maximum at ≈ 1.4D and a half-width of ≈ 0.3D (see supplemental
material, Fig. SI3). The parameters of the start population’s individ-
uals were centered around these start positions following normal
distributions with standard deviations s i. Like the Di, the s i were all
set to the same value, s i = s . In short, D defines the average dis-
tance between the start population and the global minimum and s

defines the spread of the individuals in the initial population. In all
runs, the Debye temperatures and the imaginary part of the inner
potential were set to the best-fit values listed in Table 1.

The optimal parameters F and CR for the differential evolution
algorithm were determined in a series of test runs in which F and CR
as well as s were varied for fixed D = 0.8 Å. This means that the
mean difference between the best fit coordinate values and the cor-
responding values in the start population individuals is 0.4 Å, which
is a distance somewhat beyond the distance which tensor-LEED can
commonly handle. Fig. 8 shows that the success rates are largest
for s = 0.1 and 0.2 Å with F and CR both being about 0.5–0.6. The
DE computations discussed in the following were performed with
F = CR = 0.5.

Powell method/tensor LEED optimization was performed for dif-
ferent Ds with the non-modified SATLEED package [14]. The runs
were iterated by using the structure obtained in an optimization run

Table 3
Convergence properties of the differential evolution algorithm (without optimization
of Debye temperatures and the imaginary part of the inner potential). The parameters
F and CR were both set to 0.5. Each double column lists the number of runs out of seven
runs which have reached a R-factor smaller than the one given in the second row after
300 iterations (first column) and 600 iterations (second column). For details see text.

DE s = 0.05 Å s = 0.1 Å

D [Å] RP < 0.1 RP < 0.15 RP < 0.2 RP < 0.1 RP < 0.15 RP <0.2

0.2 7 7 7 7 7 7 7 7 7 7 7 7
0.3 7 7 7 7 7 7 7 7 7 7 7 7
0.4 6 6 6 6 6 6 6 6 6 6 6 6
0.5 5 5 5 5 5 5 7 7 7 7 7 7
0.6 2 2 2 3 3 3 3 3 3 3 3 3
0.7 3 3 3 3 3 3 1 1 1 1 1 1
0.8 0 0 0 0 0 0 2 2 2 2 4 4
S 30 30 30 31 31 31 33 33 33 33 35 35

DE s = 0.2 Å s = 0.3 Å

D [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2

0.2 7 7 7 7 7 7 1 3 1 3 1 3
0.3 7 7 7 7 7 7 0 2 0 2 1 2
0.4 4 6 5 6 5 6 0 2 0 2 0 2
0.5 2 7 4 7 5 7 0 0 0 0 0 0
0.6 4 5 4 5 4 5 0 1 0 1 0 1
0.7 1 3 1 4 1 4 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0 0 0 0 0 0
S 25 35 28 36 29 36 1 8 1 8 2 8

as start structure for the following run until the difference of the
R-factors obtained in subsequent runs was smaller than 0.001.

Tables 2 (CMA-ES), 3 (DE, F=CR=0.5), and 4 (GA) list for a num-
ber of (D,s) combinations the number of runs out of seven runs
which have reached Pendry R-factors of less than 0.1, 0.15, and 0.2
after 300 and 600 generations. Tables for some other F and CR combi-
nations are shown in the supplemental material, Tables SI1–SI3. We
note that there is an obvious statistical noise in the numbers given
in the tables which is related to the limited number of optimization
runs per parameter combination. This limitation was imposed by the
finite availability of computational resources.

The ss and the Ds clearly have a significant effect onto the prob-
ability of convergence. For the D parameter the dependence is such
that the success rate simply decreases with increasing D. For the
s parameter, which defines the width of the initial population, it
appears that the probability of convergence for medium range D is
somewhat enhanced if s is not too small. This kind of D − s correla-
tion is expected since for a given D there is a reasonable chance that
the start population includes individuals with at least some parame-
ters in the convex area near to their global minimum values only if s
is large enough.

The difference between the success rates after 300 and 600 gen-
erations is an indicator for the convergence speed. In agreement with
Fig. 7, CMA-ES and DE are apparently faster than GA. The similarity of
the numbers in the RP<0.1, RP<0.15 and RP<0.2 columns demon-
strates that in most cases the search algorithms directly approach the
global minimum if they could reach a point in the search space with
RP<0.2, which is with a high probability a point in the convex area
around the global minimum.

The winner of this contest with respect to the convergence range
is clearly the differential evolution algorithm which could find the
global minimum for D = 0.8 Å in a significant number of cases.
Therefore one would likely resort to this method if the knowledge
about the structure to be found is rather limited. In the case of CMA-
ES only a few runs succeeded for D = 0.8 Å, while GA could not
produce any success for this D value. To repeat the role of D: this is
the parameter which defines the mean euclidic distance between the
center of the start population and the global minimum. However, if it
comes to converge speed, especially in the region near to the global



E. Primorac, H. Kuhlenbeck, H-J. Freund / Surface Science 649 (2016) 90–100 99

Table 4
Convergence properties of the genetic algorithm. Each double column lists the number
of runs out of seven runs which have reached a R-factor smaller than the one given in
the second row after 300 iterations (first column) and 600 iterations (second column).
For details see text.

GA s = 0.05 Å s = 0.1 Å

D [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2

0.2 7 7 7 7 7 7 7 7 7 7 7 7
0.3 7 7 7 7 7 7 7 7 7 7 7 7
0.4 3 6 5 6 6 6 7 7 7 7 7 7
0.5 0 1 0 1 0 1 3 6 5 6 5 6
0.6 0 0 0 0 0 0 1 2 2 2 2 3
0.7 0 0 0 0 0 0 0 2 1 2 2 2
0.8 0 0 0 0 0 0 0 0 0 0 0 0
S 17 21 19 21 20 21 25 31 29 31 30 32

GA s = 0.2 Å s = 0.3 Å

D [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2

0.2 6 7 6 7 6 7 0 1 1 3 1 3
0.3 5 6 6 6 7 7 0 4 2 4 2 4
0.4 4 5 4 5 5 5 0 2 1 2 1 2
0.5 1 2 1 2 1 2 1 1 1 1 1 1
0.6 2 2 2 2 2 3 0 0 0 0 0 0
0.7 0 1 1 1 1 1 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0 0 0 0 0 0
S 18 23 20 23 22 25 1 8 5 10 5 10

minimum, then CMA-ES is the winner among the global methods,
which is probably due to the more sophisticated search strategy tun-
ing of this method as compared to the other ones. GA lags somewhat
behind which is a result also obtained by other authors for different
optimization problems (see for instance [27]).

Table 5 lists how many runs out of 21 tensor LEED runs combined
with the Powell search method stopped with R-factors below 0.1,
0.15, and 0.2 for different Ds. To simplify comparison with the results
for the other algorithms, where only seven runs were performed
due to the higher computational effort, the numbers in Table 5 were
divided by three. The success rate lags clearly behind the success
rates of the other methods for s = 0.1 (see the S columns in
Tables 2, 3, and 4), dropping to a very small value for D = 0.6 Å
and vanishing above. This is not a small difference to DE since in a
24-dimensional search space the ratio of the sub-space volumes in
which success may be expected with a reasonable probability is the
ratio of the Ds (0.8 and 0.5 Å for DE and tensor LEED/Powell, respec-
tively) to the power of 24, which is about 80,000 in the present case.
On the other hand, the computational effort for tensor LEED is much
smaller which may compensate for this in many cases, especially if
a compute cluster for parallel computations is not available. There-
fore, tensor LEED/Powell method (or any other local search method)
based structural optimization is attractive in case that the structure
from which the search is started is expected to be not much different
from the global minimum structure.

The DE and CMA-ES implementations used in this study can
optimize the Debye temperatures and the imaginary part of the
inner potential in addition to the structural parameters, but it is
surely possible to implement optimization of such non-structural
parameter also for the iterated Powell method/tensor LEED search
method. Above D ≈ 0.4Å, the convergence rate decreases signifi-
cantly for all methods since the convex area around the minimum
has a width of ≈ 0.4Å for the z coordinates (they are wider for the x
and y coordinates, see supplemental material, Fig. SI4) which means
that for D ≥ 0.4Å there is an increasing chance that some parame-
ters of the individuals refer to positions outside of the convex area
around the global minimum. For the local Powell method it is essen-
tially impossible to find the global minimum from such a starting
point, and apparently the probability of failure increases also for

Table 5
Convergence properties of Powell method/tensor LEED. For details see text.

Tensor LEED

D [Å] RP<0.1 RP<0.15 RP<0.2

0.2 7 7 7
0.3 6.7 6.7 6.7
0.4 4.7 5 5
0.5 2.7 2.7 2.7
0.6 0.3 0.3 0.3
0.7 0 0 0
0.8 0 0 0
S 21.3 21.7 21.7

the global methods. Using larger populations with a larger spread
of the individuals will probably help, but this will also increase the
computational effort. Yet untested is the use of tensor-LEED in com-
bination with a global search method with an appropriately set limit
of the difference between the structure for which the reference cal-
culation is performed and the structure for which the tensor LEED
computation is performed (in order to limit the error related to the
tensor LEED approximation). Due to the limited computational effort
of tensor LEED one may expect that this approach is competitive.

5. Summary

We have investigated the structure of a c(4 × 2) MoO3 monolayer
on Au(111) with I/V LEED structural analysis employing the CMA-
ES evolutionary strategy. The structure of the c(4 × 2) MoO3 layer is
very similar to that of the single layers constituting the double lay-
ers found in a-MoO3. A glide plane in the structure leads to spot
extinctions in the LEED pattern.

The experimental I/V-LEED results were used to comparatively
evaluate the convergence speed and the convergence ranges of
CMA-ES, a genetic algorithm, differential evolution and tensor LEED
combined with the Powell optimization scheme. The latter is, in
contrast to the three other methods, a local optimization method.
The best choice with respect to the convergence range is the dif-
ferential evolution scheme. Regarding convergence speed CMA-ES is
superior while the genetic algorithm lags behind both methods in
both respects. The convergence range of tensor LEED is somewhat
smaller than that of the global methods while the computational
effort is much smaller. Therefore in a number of cases the use of ten-
sor LEED for the determination of a structure with I/V-LEED might
still be preferable, but in cases where the initial structural guess
is expected to be connected with a significant uncertainty global
methods become relevant. The differential evolution and CMA-ES
implementation used in this study are enabled to optimize arbi-
trary non-structural parameters like Debye temperatures and the
imaginary part of the inner potential which is not possible with the
employed tensor LEED implementation, but there are no general
issues preventing the optimization of such non-structural parame-
ters also in combination with tensor-LEED.
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