Cooperative Chemisorption-Induced Physisorption of CO$_2$ Molecules by Metal–Organic Chains

Min Feng†,‡ and Hrvoje Petek*

†Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States and ‡Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Yongliang Shi§, Hao Sun§ and Jin Zhao†,§,j

$§$Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and jSynergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Florence Calaza,* Martin Sterrer,$^*,^#$ and Hans-Joachim Freund*

*Department of Chemical Physics, Fritz-Haber-Institute der Max-Plank-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany and $^#$Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria

ABSTRACT Effective CO$_2$ capture and reduction can be achieved through a molecular scale understanding of interaction of CO$_2$ molecules with chemically active sites and the cooperative effects they induce in functional materials. Self-assembled arrays of parallel chains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkers decorating Au surfaces exhibit self-catalyzed CO$_2$ capture leading to large scale surface restructuring at 77 K (ACS Nano 2014, 8, 8644–8652). We explore the cooperative interactions among CO$_2$ molecules, Au-PDI chains and Au substrates that are responsible for the self-catalyzed capture by low temperature scanning tunneling microscopy (LT-STM), X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), temperature-programmed desorption (TPD), and dispersion corrected density functional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacial metal–organic polymer characteristics of both a homogeneous and heterogeneous catalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO$_2$ chemisorption at the Au adatom sites even at <20 K. The CO$_2$ species coordinating Au adatoms in-turn seed physisorption of CO$_2$ molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a full monolayer and, surprisingly, can be imaged with molecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayer to assume a rhombic structure similar to a high-pressure CO$_2$ crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains provide a platform for investigating the physical and chemical interactions involved in CO$_2$ capture and reduction.

KEYWORDS: CO$_2$ · CO$_2^{δ−}$ · CO$_2$ reduction · CO$_2$ cluster · chemisorption induced physisorption · metal–organic chains · 1,4-phenylene diisocyanide

The CO$_2$ anion radical with a symmetric bent structure is the key precursor in CO$_2$ reduction in the homogeneous and heterogeneous catalysis.$^{1−4}$ A particular challenge in reduction of CO$_2$ by heterogeneous catalysis is to render metal surfaces sufficiently reactive to form the CO$_2^{δ−}$ intermediate, and to promote further reduction to products such as carboxylates, oxalates, or products thereof,$^{5−19}$ avoiding the poisoning carbonate species.$^{3,19−31}$ Although chemisorption occurs on some transition metals, activated formation of a partially reduced CO$_2^{δ−}$ species has only been imaged at the single-molecule level on the defect-free Ni(110) surface. By contrast, clean and defect-free noble metal surfaces are unreactive with respect to CO$_2$ chemisorption. Chemisorption of CO$_2$ can be promoted, however, by defects such as steps and kinks.
or by predecorating otherwise inert surfaces with catalytically active atoms or molecules.\(^3\) Here we report on a novel method for chemically activating single crystal Au surfaces with respect to the CO\(_2\)\(^{2-}\) formation by decorating them with an interfacial metal organic polymer consisting of highly ordered 1D chains, which create Au adatom active sites. The chemisorption of CO\(_2\) ligands at such sites in-turn triggers CO\(_2\) physisorption in highly ordered 2D van der Waals monolayer.

In a previous study, we have shown that CO\(_2\) adsorption onto Au(100) and Au(111) surfaces decorated with 1D metal–organic chains (MOCs) composed of alternating units of 1,4-phenylene disiocyanide molecules and Au adatoms (Au-PDI) triggers self-catalyzed CO\(_2\) physisorption involving pronounced nanometer scale MOC’s motion. Individually the PDI molecules and Au surfaces are both catalytically inert with respect to CO\(_2\) chemisorption, but as a metal–organic interfacial polymer decorating Au surfaces they become catalytically active. By molecule resolved LT-STM imaging we show that the trigger for the catalytic response is CO\(_2\) chemisorption. Single molecule resolved imaging shows that the chemisorption of CO\(_2\) occurs at <20 K with up to two CO\(_2\)\(^{2-}\) species coordinating each Au adatom, one on each side, within the Au-PDI chains. The CO\(_2\)\(^{2-}\) species in-turn seed further condensation of highly ordered physisorbed CO\(_2\) clusters, which grow with increasing coverage into ordered molecular monolayer films that otherwise do not condense on Au surfaces. The seeding effect of CO\(_2\)\(^{2-}\) enables unprecedented imaging of support-supported 1D and 2D CO\(_2\)\(^{2-}\) \(\cdot\) (CO\(_2\))\(_n\) clusters as large as complete monolayer domains with single molecule resolution. The interaction of thus seeded CO\(_2\) films with the Au metal substrates causes the CO\(_2\) monolayer to form a highly ordered structure reminiscent of the high-pressure CO\(_2\) face-centered rhombic phase,\(^{33,34}\) rather than the common cubic “dry ice” phase. DFT calculations show that van der Waals interactions with the substrate favor this unexpected phase. Temperature dependent XPS and IRAS, as well as TPD measurements confirm the presence of the physisorbed and chemisorbed CO\(_2\) phases and give their desorption temperatures of 115 and 150 K, respectively. The ability to catalyze, resolve, and spectroscopically characterize the chemical and physical properties of CO\(_2\)\(^{2-}\) \(\cdot\) (CO\(_2\))\(_n\) clusters interacting with metal–supported metal–organic constructs at the molecular level opens the way to study CO\(_2\) reduction in the presence of electron, photon, and chemical reagents.

CO\(_2\) Adsorption Structures. Upon vapor phase deposition at 300 K, PDI molecules self-assemble into highly ordered Au-PDI chains on the Au(100) and Au(111) surfaces.\(^{35–39}\) The interaction among the Au-PDI chains is repulsive forcing them to spread out to achieve a uniform, coverage-dependent spacing at 77 K. We have reported that upon CO\(_2\) adsorption the chain interactions become attractive causing them to coalesce and capture CO\(_2\) molecules that become intercalated between them.\(^{39}\) Figure 3 of ref 39 illustrates the lateral gathering movement of the chains, whereby CO\(_2\) molecules became captured in one-molecule-wide ranks between the adjacent chains. On isolated chains or at chain bundle edges the motion of peripheral CO\(_2\) molecules is unconstrained; this motion relative to the chains is captured in STM images as halo structures, which emanate from Au adatoms and encircle the PDI molecules. Within these halo structures the closest approach of CO\(_2\) molecules occurs at Au adatoms, which suggests that the strongest CO\(_2\) molecule-MOC interaction occurs at these sites.\(^{39}\) These observations suggested that CO\(_2\) chemisorption occurs at the Au adatom sites and the concomitant charge redistribution induces the chain coalescence.\(^{39}\)

RESULTS

CO\(_2\) Monomer Adsorption on Au-PDI/Au(100). To gain further information on the interaction of CO\(_2\) molecules with Au-PDI chains through STM imaging, in this study we perform LT-STM experiments at 4.5 K to freeze substantially their translational motion. As a reference for the nature of interactions of CO\(_2\) molecules on the undecorated, i.e., bare Au(100)-(5 \(\times\) 20) reconstructed surface, in Figure 1a we first show images taken at 4.5 K after dosing of CO\(_2\) at 20 K. CO\(_2\) molecules at submonolayer coverage on unmodified Au surface cluster through quadrupole—quadrupole interactions into physisorbed chemically inert rafts. These structures appear as bright, unresolved contrast with extensive streaking indicative of tip-induced molecular displacement.\(^{30–32}\) Such CO\(_2\) clusters interact with Au surfaces through a weaker van der Waals interaction than within the clusters; consequently, the CO\(_2\) aggregates are mobile and/or easily disturbed by the STM tip, preventing molecule-resolved imaging of stable structures even at 4.5 K.

By contrast to the bare surface, decorating the Au(100) surface with the Au-PDI chains causes CO\(_2\) molecules to adsorb in stable structures that preferentially coordinate the Au adatom sites; this attraction enables imaging of the interaction of single CO\(_2\) molecules with Au-PDI chains at 4.5 K (Figure 1b,c). Such preferred interaction of CO\(_2\) molecules with Au adatoms was already presaged by the halo structures at 77 K.\(^{39}\) Although it is difficult to diagnose charge transfer only by STM imaging, we claim that CO\(_2\) is chemisorbed at the Au adatoms sites as CO\(_2\)\(^{2-}\), and we will show by XPS, IRAS, and TPD that such species exists when Au-PDI chain decorated Au surfaces are exposed to CO\(_2\). Based on the STM imaging we can conclude that the strongest interaction experienced by CO\(_2\) molecules occurs at the Au adatoms sites within Au-PDI chains. The CO\(_2\)\(^{2-}\) species in Figure 1b,c are imaged at 4.5 K as a two-lobed “rabbit ears” structures on one and
occasionally both sides of Au adatoms. The high-resolution image in Figure 1c resolves the center-to-center distance between the lobes of 0.20 \pm 0.03 nm. Considering that 0.232 nm separates the O atoms of a linear CO$_2$ molecule, the rabbit ear structure is consistent with resolving them within a single molecule. The structure in Figure 1c that is superimposed above one of the CO$_2^\delta$ images in Figure 1c is based on the simulated STM imaging in the Supporting Information Figure S1. The rabbit ear structures uniquely appear at the Au adatom sites, and cannot be assigned to CO$_2$ van der Waals dimers. Furthermore, because single-lobe images cannot be found for single CO$_2$ molecules at Au adatom sites and STM manipulation experiments (see below) cannot create them, we conclude that the rabbit ears structures are the characteristic images of CO$_2$ monomers chemisorbed at Au adatom sites. The actual structure of the chemisorbed CO$_2$ molecule is uncertain, however, because the carbon atom is not resolved. Moreover, it is also possible that STM is imaging single CO$_2$ molecules interchanging between two equivalent sites through thermal or STM tip-induced stimulation at 4.5 K.

Co$_2$ Cluster Condensation on Au-PDI/Au(100). The chemisorbed Au-CO$_2^\delta$ species seed further CO$_2$ molecule condensation and anchor thus formed CO$_2^\delta$ \cdot(CO$_2$)$_n$ clusters, as seen in Figure 2. Note that stable CO$_2$ clusters form only at the seeding sites, which is consistent with the interaction between the anionic CO$_2^\delta$ and the quadrupolar neutral CO$_2$ molecules. No CO$_2$ molecule appears next to a PDI site without simultaneously interacting with a CO$_2^\delta$ anchor molecule. When physisorbed CO$_2$ molecules interact with CO$_2^\delta$, the two-lobe image of the anchoring molecule disappears. Instead, dimers and larger assemblies are characterized by centers of bright contrast having typical distances of 0.40 \pm 0.03 nm (Figure 2) that is typical for CO$_2$ molecules assembled through the quadrupole–quadrupole interactions.

Figure 1. (a) STM image acquired at 4.5 K after dosing CO$_2$ molecules onto the clean Au(100) surface. The periodic background contrast is from the 5 x 20 reconstruction. The ragged, bright contrast is from CO$_2$ islands, which are highly mobile and perturbed by the STM tip even at 4.5 K. (b) STM image at 4.5 K of the Au-PDI chain modified Au(100) surface after submonolayer of CO$_2$ is dosed at 20 K. The image shows occasional CO$_2$ monomers adsorbed alongside the Au adatoms. Black dashed circles indicate Au adatoms hosting the chemisorbed CO$_2^\delta$. (c) The magnified image of the rectangular region in (b) showing the chemisorbed CO$_2^\delta$. The Au adatoms, PDI molecules, and one CO$_2^\delta$ are marked with model structures as in (b). The molecular structure shown for one of the two CO$_2^\delta$ in the image is based on the simulated STM imaging in the Supporting Information Figure S1. The white bars indicate 1 nm scale.

To confirm that the anchoring molecule in dimers is the same species as a CO$_2^\delta$ monomer with the two-lobe structure we performed molecular manipulation
experiments using the STM tip. In Figure 2b,c, we drag one CO₂ molecule from a dimer to a solitary neighboring CO₂⁻ with the rabbit ear structure on the same Au-PDI chain. After the manipulation, the released CO₂⁻ recovers its two-lobed appearance, and simultaneously, the newly formed dimer losing its original two-lobed structure takes on the characteristic image of the original dimer. The change of the chemisorbed CO₂⁻ image between the monomer and dimer may indicate that CO₂⁻ reorientation upon forming the dimer, or else the rabbit ear structure represents fluctuation of CO₂⁻ between two equivalent sites at 4.5 K, one of which is hindered by the dimer formation. The former interpretation is consistent with the calculated structure of CO₂⁻/CO₂ and its STM imaging in the Supporting Information Figure S1. The manipulation of the physisorbed CO₂ molecule between the adjacent seeding sites can be reversed. These manipulation experiments confirm our assignment of the CO₂ monomer and dimer structures.

Our experiments further reveal that CO₂⁻ species seed and anchor the nucleation and growth of 1D and 2D CO₂ molecular clusters. Figure 2d shows a 1D CO₂ cluster formed next to an MOC chain. For each Au-PDI unit there is one CO₂⁻ seed interacting with an Au adatom and 2–3 associated physisorbed CO₂ molecules solvating the PDI ligand. Figure 2d also shows further emergence of a CO₂ island from the 1D CO₂ chain with consistent intermolecular distances of ~0.4 nm. As no such island can be resolved by STM on the bare Au(100) surface under the same experimental conditions, we claim that exclusively physical interaction among CO₂ molecules and with the substrate cannot explain the molecule resolved imaging of stable CO₂ islands. The formation and imaging of stable clusters is consistent with chemisorption of CO₂ at the Au adatom sites to form CO₂⁺, which further seeds and stabilizes the condensation of neutral CO₂ molecules as in the case of gas-phase CO₂ ionic clusters. The difference between the ionic and neutral CO₂ clusters reflects the large quadrupole moment and polarizability of CO₂ molecules, which enable them to screen and solvate doped charges. Complementary LT-STM measurements on MOC decorated Au(111) surface in the next section confirm that the PDI-Au chains confer the ability to chemisorb and physisorb CO₂ molecules independent of the particular properties, e.g., the crystalline order or work function of the Au substrate.

From CO₂ Clusters to Monolayer on Au-PDI/Au(111) Surface. Here we establish by STM imaging that Au-PDI chain covered Au(111) and Au(100) surfaces have the same specific adsorption sites for CO₂ molecules at 4.5 K. Furthermore, we extend the cluster growth to full CO₂ monolayers on the Au-PDI/Au(111) surface.

Figure 3a,b shows typical CO₂ monomers, dimers and islands formed alongside Au-PDI chains on the Au(111) surface. As on the Au-PDI/Au(100) surface, the CO₂ monomers and dimers on the Au-PDI/Au(111) surface adopt the same two-lobe and ball structures at low coverages (Figure 3a). Larger CO₂ clusters, as shown in Figure 3b, have two characteristic structures, the compact rhombic monolayer and the hexagonal missing-molecule defect. The clusters grow to a monolayer, forming crystalline stripes that fill the interstitial space between the Au-PDI chains. Figure 3b shows a large area view of the monolayer film where the bright contrast represents the Au-PDI chains, which are aligned along three high symmetry directions of the surface, and the darker contrast corresponds to individual CO₂ molecules forming the monolayer in the space between the MOC chains; the contrast is modulated by the underlying herringbone reconstruction of the substrate. In Figure 3d,e consecutive images are taken over the same area of CO₂ monolayer stripes to show that the hexagonal defects move through the layer even at 4.5 K; this occurs most likely by translation of single molecules from the compact rhombic domains to the missing molecule defects that correspond to the hexagonal lattice. The facile mobility of the CO₂ molecules within a monolayer other than at the seeding sites is consistent with their physisorption state.

Although the structure of the monolayer CO₂ stripes is established by physical interactions, it is clear from the structure of CO₂ clusters and the magnified image of the monolayer in Figure 3f that the growth is promoted by chemisorption of two CO₂ molecules, one on each side of the Au adatoms. Moreover, the dark contrast between CO₂ and PDI shows that the interaction between CO₂ and phenyl group of PDI is primarily repulsive. The attachment of single CO₂ molecules to the Au sites and their absence around the PDI sites establish that the CO₂⁻ is the seed and anchor for the nucleation and condensation of the monolayer stripes.

Finally, we test the length scale over which the CO₂ monolayer crystalline structures can form as the MOC chain separation is increased. In Figure 4 we show a monolayer CO₂ film with sparse Au-PDI chains where the interchain distance ranges from 8 to 22 nm. We see that even for such sparse MOC chain density, the CO₂⁻ chemisorption at the Au seeding sites enables crystallization of a full monolayer with high local crystalline order. The predominant rhombic structure with several rotational domains is interspersed with stripes of hexagonal defect structures, forming a kagome lattice. Thus, the presence of a small density of chemisorption sites on MOC chains is able to seed the 2D CO₂ crystalline growth over the entire atomically flat Au(111) terraces.

Upon formation of a full CO₂ monolayer in Figures 3c and 4 we conclude that (i) CO₂⁻ molecules adopt a highly crystalline order at 4.5 K on Au-PDI decorated gold surfaces, enabling the molecule resolved imaging of CO₂⁻ to be performed from single molecules up to the full monolayer; (ii) the preferred
structure within a monolayer is the rhombic one with a unit cell dimension of 0.40 (0.03 nm and coordination shell of six nearest neighbor molecules; and (iii) the kagome structures exist as less dense domains within the rhombic structure before the full monolayer coverage is reached.

CO$_2$ Monolayer Structure. Next we consider the physical origin of the rhombic structure of the CO$_2$ monolayers on both the Au-PDI decorated Au(100) and Au(111) surfaces (Figures 2-4) based on dispersion corrected DFT-D calculations. At the atmospheric pressure crystalline CO$_2$ molecular solid, i.e., “dry ice”, has a cubic structure where CO$_2$ molecules tilt by 35°/C176 with respect to the crystalline planes. CO$_2$ undergoes a phase transition at 13 GPa from the cubic to an orthorhombic structure with reduced tilting angle of the CO$_2$ molecules.33,34 The similarity between the structure of a CO$_2$ monolayer on Au surfaces and CO$_2$ solid under high pressure suggests physisorbed molecules experience similar molecular reorientation.

To confirm that a compression is taking place in the first CO$_2$ monolayer as in the high pressure CO$_2$ phase, we calculate the monolayer structure and stability using the DFT-D method to incorporate the van der Waals interactions among CO$_2$ molecules and with the Au(111) surface.46 The details of the calculations are presented in the Supporting Information, and here we present only the main results. The calculations are performed on 2 \times $\sqrt{3}$ and 7 \times $\sqrt{3}$ surface unit cells to
model the cubic and rhombic structures, corresponding to the low and high pressure phases of dry ice. The rhombic structure corresponds best to the experimental intermolecular distances and CO2 film alignment with respect to the Au(111) substrate, whereas the cubic structure is not found in the STM imaging of a CO2 monolayer, but is considered here as a representation of the dry ice phase.

In agreement with experiment, by including the Au(111) surface, the rhombic structure is calculated to be more stable by 82 meV. In cubic structure, CO2 molecules tilt, forming an angle of 30° with respect to the surface, whereas in the rhombic structure, they are more parallel with an angle of 8°. Tilting of the CO2 molecules to a more parallel alignment with respect to the surface plane increases the van der Waals interactions with the substrate, and therefore favors the rhombic phase. This additional interaction with the Au surfaces compensates for the increased intermolecular repulsion that exists in the high-pressure rhombic phase of CO2.

XPS, IRAS, and TPD Probes of CO2 Adsorption State. The LT-STM imaging shows manifestations of the dominant interactions among CO2, Au-PDI chains, and Au surfaces, but the charge transfer to CO2 molecules can only be inferred indirectly. Surface integrated XPS and IRAS measurements, however, can identify the charge state of the adsorbed species. Our goal is to correlate the LT-STM with XPS and IRAS measurements, but because of experimental constraints, the XPS and IRAS cannot be performed at comparably low temperatures. The lowest sample temperature attained in the spectroscopic studies is ~100 K, where, according to our previous investigations, CO2 adsorption induces Au-PDI chain coalescence and interstitial CO2 trapping. To distinguish between different states of adsorbed CO2, we prepare PDI-Au(111) samples with two different PDI coverages: A high-coverage sample corresponding to full monolayer of PDI and a chain separation of 1.4 nm (PDI\textsubscript{h}), and a low coverage sample of about half-monolayer and a chain separation of 2.8 nm (PDI\textsubscript{s}). Coverage is estimated based on work function shifts upon PDI adsorption, which are typically −1.0 and −0.7 eV for the high- and low-coverage PDI-Au(111) samples, respectively. The −1.0 eV shift corresponds to the maximum MOC coverage attained in our experiments. From the analysis of XPS peak intensities the estimated PDI coverage ratio of PDI\textsubscript{h}/PDI\textsubscript{s} is \(\Theta_s/\Theta_h = 0.5–0.6\) (\(\Theta\) represents the coverage of Au-PDI chains on the surface). While CO2 adsorbed at peripheral sites of the Au-PDI chains or trapped between Au-PDI chains are present on both samples, we expect physisorbed CO2 domains to form more abundantly on the PDI\textsubscript{s}.

First, we note that CO2 dosed onto clean Au(111) at 100 K followed by pumping at this temperature does not give a detectable photoemission signal from adsorbed species. This is consistent with conclusions from the LT-STM experiments that the CO2 physisorption is enhanced to Au-PDI chain decorated Au surfaces. Therefore, any photoemission peaks from CO2 on PDI covered Au surfaces have to be a consequence of direct or catalyzed interactions between CO2 and Au-PDI chains.

Figure 5a,b shows O 1s and C 1s X-ray photoemission spectra for a saturation coverage of CO2 at 100 K on Au(111)-PDIL (top) and Au(111)-PDI\textsubscript{h} (bottom). Lines marked CO2\textsubscript{p} and CO2\textsubscript{c} denote the O 1s and C 1s binding energies of physisorbed and chemisorbed CO2 species, respectively. The spectral fitting is explained in the text. Thick black lines: raw spectra; red lines: individual signal contributions obtained from spectral fitting; gray lines: fit sum; thin black lines: background.

Figure 5. O 1s (a) and C 1s (b) X-ray photoemission spectra for a saturation coverage of CO2 at 100 K on Au(111)-PDIL (top) and Au(111)-PDI\textsubscript{h} (bottom). Lines marked CO2\textsubscript{p} and CO2\textsubscript{c} denote the O 1s and C 1s binding energies of physisorbed and chemisorbed CO2 species, respectively. The spectral fitting is explained in the text. Thick black lines: raw spectra; red lines: individual signal contributions obtained from spectral fitting; gray lines: fit sum; thin black lines: background.
PDI-covered Au(111) surfaces, with one of the components present on both PDI\textsubscript{L} and PDI\textsubscript{H} being in a chemisorbed anionic state, and the other one, which is more abundant on PDI\textsubscript{L}, being physisorbed.

The thermal stability of CO\textsubscript{2} on PDI-covered Au(111) is first investigated by TPD (Figure 6a). The bottom CO\textsubscript{2} TPD trace (dotted line) in Figure 6a shows CO\textsubscript{2} desorption from clean Au(111) after exposure to CO\textsubscript{2} at 100 K. Since no surface species can be detected for this preparation with spectroscopic methods (XPS and IRAS), the CO\textsubscript{2} signal is attributed to its desorption from the sample holder. CO\textsubscript{2} trapped on Au(111)-PDI\textsubscript{H} gives rise to a broad desorption signal peaking at 125 K and extending up to \(\sim 150\) K. In addition, the Au(111)-PDI\textsubscript{L} sample exhibits a sharp low-temperature CO\textsubscript{2} desorption at 115 K (\(\alpha\)). Taking the XPS and TPD results together, it is tempting to assign the latter desorption signal to physisorbed CO\textsubscript{2} and the broader one at 125 K to chemisorbed CO\textsubscript{2}. That this assignment needs further refinement will become clear after consideration of the corresponding IRAS results, which are discussed next.

To obtain further insight into the adsorption and bonding of CO\textsubscript{2} on the Au(111)-PDI surfaces, the chemical nature of adsorbed species as well as their thermal evolution is probed by IRAS (Figure 7). Before exposure to CO\textsubscript{2}, the IRA spectra are dominated by the NC vibrations of adsorbed PDI,\(^{36,48-54}\) giving rise to bands at 2141 and 2164 cm\(^{-1}\) for the high- and low-coverage samples, respectively (top spectra in Figure 7a,b). The spectra undergo significant changes upon adsorption of CO\textsubscript{2} (blue traces in Figure 7a,b). As will be discussed in more detail below, CO\textsubscript{2} adsorption/desorption induces shifts of the NC vibrations, which appear in Figure 7 as positive and negative peaks according to the choice of the reference spectra for the background subtraction (see Figure 7 caption for details).
We will focus now on IRAS signals that can be attributed to adsorbed CO$_2$. For both, Au(111)-PDI$_h$ (Figure 7a) and Au(111)-PDI$_l$ (Figure 7b), new bands appear at around 2340 and 1620 cm$^{-1}$, respectively, after adsorption of CO$_2$. For Au(111)-PDI$_h$, the single band observed at 2338 cm$^{-1}$, which is slightly red-shifted from the antisymmetric stretch vibration (ν_3) of gas-phase CO$_2$ (2349 cm$^{-1}$), can be attributed to physisorbed CO$_2$, the shift arising from weak interaction with the substrate. The other band at 1620 cm$^{-1}$ is assigned to the antisymmetric stretch vibration of the bent CO$_2^-$ anion, in agreement with previous studies of CO$_2$ adsorbed on metals1,10,55,56 or isolated in rare-gas matrix.$^{57-59}$ We note that carbonate would also give an IR signal at around 1600 cm$^{-1}$. We consider this assignment to be unlikely, because carbonates are thermally much more stable than the species observed here (see below), and a source of oxygen atoms necessary for their formation is lacking.

On the basis of the established correlation between the CO$_2^-$ ν_3 frequency and the degree of charge transfer, the observed peak at 1620 cm$^{-1}$ is consistent with a transfer of significant charge approaching 1 e$^-$. To the CO$_2^-$, the corresponding signal on Au(111)-PDI$_h$ (Figure 6b, blue trace). In the ν_3 region of the physisorbed CO$_2$, however, instead of a single band, at least three bands appear: one at 2333 cm$^{-1}$, slightly red-shifted from the corresponding signal on Au(111)-PDI$_h$, and two additional ones at 2389 and 2280 cm$^{-1}$. As expected, the physisorbed CO$_2$ is more weakly bound and has desorbed from both surfaces (PDI$_h$ and PDI$_l$) upon heating to \sim120 K (red spectra in Figure 7a,b; due to the choice of the reference spectrum, the desorbing species appear as positive signals), but the more strongly bound chemisorbed CO$_2^-$ is stable up to \sim150 K in agreement with the TPD results presented above.

The interaction of CO$_2$ with Au-PDI chains on the Au(111) surfaces is also manifest in distinct frequency shifts of the NC stretch vibration shown in Figure 8a for Au(111)-PDI$_l$. The NC vibration shifts from 2166 to 2176 cm$^{-1}$ upon cooling in CO$_2$ atmosphere from 159 to 104 K. Upon subsequent sample warming, the CO$_2$ adsorption remains unaffected up to 110 K where, according to Figure 7, no significant desorption occurs. Further warming to 116 and 119 K, however, removes all the physisorbed CO$_2$ from the surface, leading to a partial return of the NC frequency to its noninteracting value. A clear high-frequency shoulder centered at about 2180 cm$^{-1}$, however, remains in this temperature range, and disappears only after further heating to 159 K (Figure 7a) when the chemisorbed CO$_2^-$ has desorbed (Figure 6b). This shoulder therefore can be directly associated with the chemisorbed CO$_2^-$ where the blue-shift arises from charge-transfer from the 2π* state of NC through the Au adatom to CO$_2^-$.

According to the distinct difference in thermal stability of physisorbed CO$_2$ and CO$_2^-$, a spectral isolation of the individual components by controlled heating should be similarly possible in TPD and XPS as it is in IRAS. Figure 6b displays XPS spectra taken from Au(111)-PDI$_l$ following CO$_2$ adsorption at 100 K (upper spectrum) and subsequent heating to 126 K (lower spectrum), confirming that physisorbed CO$_2$ has to a large extent been selectively removed from the surface by the thermal treatment (the high BE shoulder present in the XP spectrum of the heated sample can most likely be attributed to CO$_2$ species readorsed after recoiling to 100 K). The remaining chemisorbed CO$_2^-$ gives rise to a CO$_2$ desorption signal peaking at 145 K (red trace in Figure 6a), suggesting that the broad desorption feature observed in the TPD spectra contains partly overlapping desorption states of physisorbed (β) and chemisorbed (γ) CO$_2$.

The combination of XPS, IRAS, and TPD results thus provides a very consistent interpretation of the spectroscopic observations in terms of the presence of various CO$_2$ species adsorbed on the Au(111)-PDI surfaces (Table 1). The most strongly bound CO$_2$ species is chemisorbed CO$_2^-$. Its assignment is supported by the signature O 1s BE (\sim532 eV), the vibrational frequency (1620 cm$^{-1}$) and the fact that it is the most strongly bound CO$_2$ species (TPD peak γ). According to the LT-STM imaging, this species is adsorbed at the Au adatom sites of Au-PDI chains and acts as the seed for further CO$_2$ adsorption. The second CO$_2$ species, which is present on both surfaces, is physisorbed CO$_2$ exhibiting an O 1s BE of 534.5 eV and a vibrational frequency slightly red-shifted from ν_3 of gas-phase CO$_2$ (species β in TPD). This species is attributed to CO$_2$ molecules,
TABLE 1. Summary of O 1s and C 1s Binding Energies, Desorption Temperature, and CO2 Vibrational Frequencies of the Different CO2 Species Adsorbed on Au(111)-PDIh and Au(111)-PDIe.

<table>
<thead>
<tr>
<th>CO2 species</th>
<th>B.E. O 1s/eV</th>
<th>B.E. C 1s/eV</th>
<th>Tdes/K</th>
<th>ν(CO2)/cm−1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemisorbed CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au(111)-PDIh</td>
<td>532.8</td>
<td>n.o.</td>
<td>145</td>
<td>1620</td>
</tr>
<tr>
<td>Au(111)-PDIh</td>
<td>532.3</td>
<td>n.o.</td>
<td>1627</td>
<td></td>
</tr>
<tr>
<td>Physisorbed CO2, trapped</td>
<td>534.5</td>
<td>n.o.</td>
<td>2338</td>
<td></td>
</tr>
<tr>
<td>Au(111)-PDIh</td>
<td>532.3</td>
<td>n.o.</td>
<td>2338</td>
<td></td>
</tr>
<tr>
<td>Physisorbed CO2, 2D islands</td>
<td>534.5</td>
<td>n.o.</td>
<td>125 (f)</td>
<td>2333</td>
</tr>
<tr>
<td>Au(111)-PDIh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au(111)-PDIh</td>
<td>534.8</td>
<td>291.2</td>
<td>115</td>
<td>2389, 2280</td>
</tr>
</tbody>
</table>

* n.o. indicates "not observed".

which get trapped between PDI chains upon CO2 adsorption-induced chain coalescence, as observed in our previous STM study (Figure 3 of ref 39). Finally, there is a third CO2 species, which is only present on Au(111)-PDIh. Its O 1s BE is typical of physisorbed CO2. Unlike the other physisorbed species present on the surfaces, however, this species gives rise to a relatively sharp desorption peak at low temperature (peak 3), and to two vibrations that are shifted ∼50 cm−1 to both sides of the ν3 of CO2. Because this species does not appear on the densely packed Au(111)-PDIh sample we assign the corresponding adsorption state to 2D CO2 monolayer stabilized on the exposed Au(111) areas of Au(111)-PDIh by the chemisorbed CO22−.

Whereas the assignment of the first two CO2 species is relatively straightforward, we consider the interpretation of the third species as arising from 2D CO2 monolayer to be speculative, because it is mainly motivated by the STM observations made at 4.5 K. Such species could exist on Au-PDI decorated surfaces at 77 K, but in a motional state that cannot be imaged by LT-STM. To provide more solid basis for the assignment, in Figure 8b we compare IRA spectra following CO2 adsorption at ∼100 K on the clean Au(111) and Au(111)-PDIh surfaces. As already noted, interaction between CO2 and clean Au(111) is weak and does not yield any stable adsorbed species at 100 K. The adsorbed CO2 can only be observed on Au(111) surface at 100 K when an equilibrium between adsorption and desorption is established by bathing the sample in an atmosphere of 5 × 10−8 mbar CO2. Correspondingly, an IRA spectrum taken after exposure of Au(111) to CO2 followed by pumping gives a flat baseline in the ν3 region (Figure 8b, middle). In CO2 atmosphere (top spectrum in Figure 8b), however, surprisingly the spectrum contains in addition to a "regular" CO2 species with a ν3 (2341 cm−1) close to that of gas-phase CO2, the two side-bands that are also present on Au(111)-PDIh, at similar frequencies. (Note that the side bands do not correspond to the rotational P- and R-branches of the vibrational spectrum of gas-phase CO2).

Two important conclusions can be drawn from this observation: First, the presence of CO2 species giving rise to these particular vibrations is not directly related to adsorbed PDI on Au(111), making its assignment to 2D CO2 overlayers most plausible. Second, the 2D overlayer is stabilized by the presence of PDI, which concurs with the STM observation that the seeding effect of CO2+ stabilizes the formation of extended 2D clusters and monolayer films (Figure 3 and 4).

Finally, we comment on the large positive and negative shifts of the two bands related to 2D CO2 from the gas-phase ν3 vibrational frequency. Vibrations at 2390 and 2280 cm−1 are not unusual for physisorbed CO2. The former one in combination with a vibrational mode at ∼2340 cm−1 have been assigned to the longitudinal optical (LO) and transverse optical (TO) phonon modes of crystalline and amorphous CO2 ices.62 The low frequency vibration at 2280 cm−1 is in the range of the ν3 mode of 13CO2. For the present study, both of these possibilities can be discarded because (1) the LO-TO splitting can only be observed in 3D CO2 ices, and (2) the intensity of the 2280 cm−1 mode is much larger than expected for the 1% natural abundance of 13C. Because the two bands at 2390 and 2280 cm−1 appear to be coupled an interpretation in terms of a splitting of the ν3 mode into an in-phase and out-of-phase excitation of two translationally inequivalent CO2 molecules in the unit-cell (Davydov splitting) of an ordered CO2 overlayer structure seems more plausible. In fact, 2D overlayers of CO2 readily form at low temperature on insulator surfaces such as MgO(001), KCl(001), CeF(100) or NaCl(001), and their structure has been investigated in detail by polarized IR, low energy electron diffraction, and helium atom scattering experiments.62–67 Davydov splittings for these systems are in the range of 10–30 cm−1, much smaller than observed in the present case and consistent with the known gas phase splittings.53,68 The Davydov splitting on a metal surface can be larger than expected from the gas phase transition dipole moment of 0.32 D for CO2, as well as the observed splittings on insulator surfaces, due to the enhancement of the transition dipole as well as resonant dipole–dipole interactions including the image dipoles at metal surfaces. For molecules such as CO the Davydov splitting can exceed 100 cm−1, which is larger than predicted theoretically based on simple models of screening at metal surfaces.69,70 The splitting of the ν3 mode of CO2 on Au(111) surface is expected for two molecules per surface unit cell in the rhombohedric structure, and its magnitude relative to the gas phase and insulator surfaces is consistent with those for other molecular overlayers on metals.

DISCUSSION

The CO2 molecule/Au-PDI chain/Au surface system reveals a fascinating example of adsorption-induced
collective surface behavior of metal–organic surface polymer in response to chemical stimulation by CO₂ molecules. Decorating metal surfaces with submonolayer thick metal–organic films offers a novel strategy for activating catalytic reactions. The Au surfaces and Au-organic polymer with no known catalytic activity with respect to CO₂ reduction, becomes highly active when combined under UHV conditions. Organic molecules with strongly electron donating or withdrawing functional groups can form 1D or 2D metal–organic chains and webs where the metal adatoms acquire exceptional catalytic properties. Because of charge transfer and reduced coordination number, metal atoms within such constructs can interact with target molecules in novel ways akin to inorganic homogeneous catalysts, offering metal atom coordination sites to reactants that are not available on low-index metal surfaces. Moreover, organic molecule ligands can be functionalized to amplify the charge transfer interactions to stabilize the CO₂⁻ species and other products in a manner that has been exploited by plants in photosynthetic carbon fixation as well as model systems that mimic the metal–organic reactive sites. The catalytic properties of such metal–organic constructs will be revealed by further exploration of new substrates and reactants.

The ability to image structural response with molecular resolution and spectroscopically characterize the charge state of the surface species, their interactions, and chemically stimulated responses offers an unprecedented model for catalytic processes relevant to CO₂ capture and reduction. On the basis of molecule resolved STM imaging and charge transfer sensitive spectroscopic measurements of CO₂ chemisorption and physisorption on Au-PDI chain decorated Au surfaces, the following picture emerges. PDI molecules with isocyanide groups having major carbene and surfaces, the following picture emerges. PDI molecules and physisorption on Au-PDI chain decorated Au surfaces, the following picture emerges. PDI molecules and physisorption on Au-PDI chain decorated Au surfaces, the following picture emerges. PDI molecules and physisorption on Au-PDI chain decorated Au surfaces, the following picture emerges. PDI molecules and physisorption on Au-PDI chain decorated Au single crystal surfaces, and how such CO₂–Au adatom interactions promote the nucleation and growth of physisorbed clusters from dimers to full monolayers. The LT-STM images identify distinct chemisorption sites where CO₂⁻ forms by charge transfer from the substrate. The XP and IRA spectra are consistent with the transfer of considerable electron charge to two CO₂ molecules per Au adatom. The promoted nucleation enables STM visualization of the progressive physisorbed layer growth from dimers to 1D chains, 2D islands, eventually terminating in 2D monolayer domains, which are bounded by Au-PDI chains. The propensity of chemisorbed CO₂⁻ species to condense clusters over nanometer length scales suggests that the chemistry at such sites can be significantly modified by secondary interactions, which are triggered by the primary chemisorption process. The control of secondary interactions, as occurs in carbon fixation by plants, may hold the clue to realizing efficient, low energy pathways for CO₂ capture and conversion into useful chemical products. Our work thus provides an experimental avenue for exploring the microscopic insights in the
CO₂ capture and reduction, as well as for exploring the nature of weak intermolecular forces in physical phenomena such as molecular condensation and ion solvation.

METHODS

Upon dosing PDI molecules at room temperature, 1D [-Au-PDI₂]ₙ chains self-assemble into parallel arrays on clean Au(100) and Au(111) surfaces. The PDI molecule dose determines the Au-PDI chain coverage, and thus the density of the chains on the surfaces. For the STM experiments, CO₂ molecules are dosed in situ at 20 K onto the MOC covered surfaces. STM constant current topographic images are taken at 4.5 K with a current of 0.1 nA and bias voltage of 0.1 V. The XPS, IRAS and TPD measurements are performed in a separate apparatus where the low-coverage [Au(111)-PDLₐ] and high-coverage [Au(111)-PDLₐ] samples are prepared. TPD scans and XP spectra (O 1s and C 1s region) are taken after dosing CO₂ (saturation at 100 K) to Au(111) and PDI-Au(111). The Au(111) work function changes induced by PDI desorption are obtained from determining the low kinetic energy cutoff of the corresponding XP spectra. For the IRAS measurement, room temperature spectra of clean and PDI dosed Au(111) are obtained first. Then the sample is cooled to 213 K to record a new background spectrum. CO₂ molecules are introduced into the UHV chamber through a leak valve at a sample temperature of 213 K and subsequent spectra are recorded while cooling the sample with the CO₂ background pressure of 5 × 10⁻¹⁰ mbar. After reaching the lowest temperature, CO₂ is evacuated from the chamber and a spectrum is recorded. This spectrum then serves as reference for the later ones recorded during the warming phase. First-principles calculations at DFT-D level are described in the Supporting Information.

Supporting Information: The authors declare no competing financial interest.

Acknowledgment. The authors acknowledge DOE-BES Division of Chemical Sciences, Geosciences, and Biosciences Grant No. DE-FG02-09ER16056 and NSF 1132243/4, 21421063. Some calculations were performed at the Environmental Molecular Sciences Laboratory at the PNNL, a user facility sponsored of Biological and Environmental Research. H.P. acknowledges support from the Alexander von Humboldt Research Award and the Chinese Academy of Sciences President’s International Fellowship, and F.C. acknowledges the Alexander-von-Humboldt foundation for a Georg Forster fellowship.

Supporting Information Available: The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b05222.

First-principles calculations on CO₂ physisorbed monolayer structures and CO₂ chemisorption structures at PDI chains. (PDF)

REFERENCES AND NOTES

