Photoemission from Ordered Physisorbed Molecular Phases N₂/Graphite, N₂ and CO/Ag(111)

D. Schmeißer *

Hahn-Meitner-Institut für Kernforschung Berlin, Bereich Strahlenchemie, 1000 Berlin 39, Federal Republic of Germany

I. W. Lyo, F. Greuter **), E. W. Plummer
Dep. of Phys., University of Pennsylvania, Philadelphia, PA 19104-3859, USA

H.-J. Freund, M. Seel
Inst. f. Physikalische und Theoretische Chemie, Universität Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany

Adsorption / Gases / Metals / Phase Transitions / Spectroscopy, Photoelectron

Using angle resolved ultraviolet photoelectron spectroscopy (ARUPS) the two dimensional energy dispersions of ordered physisorbed monolayers of N₂ and CO/Ag(111) has been measured. For N₂/graphite the ordered herringbone structure can be identified by correlating

*) Present address: Institut für Physikalische und Theoretische Chemie der Universität Tübingen, Auf der Morgenstelle 8, 7400 Tübingen, Federal Republic of Germany.

**) Present address: Brown Boveri Research Center, CH-5405 Baden, Switzerland.

0005—9021/86/0303—0228 $ 02.50/0
Introduction

The physical properties of physisorbed diatomic molecules have been studied to derive complete phase diagrams [1]. High surface area substrates like grafoil are necessary to employ specific heat measurements [2] or to perform neutron scattering (NSS) experiments [3]. More recently, it has been possible to observe LEED patterns of ordered layers of physisorbed N₂ and CO using highly oriented pyrolytic graphite (HOPG) as a substrate that provides large crystalline areas of graphite [4, 5]. The results indicate various commensurate and incommensurate phases at coverages close to the complete monolayer. Among them a herringbone structure is identified in which the molecules are oriented in plane (parallel to the surface) the molecular axes arranged almost perpendicular to each other. Physically, the symmetry of these arrangements mean, that two molecules are in the Surface Brillouin Zone (SBZ). In Fig. 1 schematic presentations of that herringbone structure for the real and the reciprocal space are given.

REAL SPACE

RECIPROCAL SPACE

Fig. 1

Arrangement of physisorbed molecules in a \(\sqrt{3}(2 \times 1)\) superstructure when adsorbed on a hexagonal substrate. In real space the unit cell contains 2 molecules, as indicated. In reciprocal space the SBZ for the \(\sqrt{3}\) with the symmetry points at \(M\) and \(K\) are shown for comparison (dashed hexagon).

Angle resolved ultraviolet photoelectron spectroscopy (ARUPS) has been used in particular to study the electronic and geometric structure of chemisorbed atoms and molecules [6]. More recently, the method has been extended for physisorbed noble gas atoms [7], too. The observed topmost p-levels showed dispersion up to 0.6 eV along the main symmetry lines. Comparing to the 2D band structures of chemisorption systems like Chalcogen/Ni or CO/Ni [6] the dispersion is very similar although the adsorbate-surface interaction is quite different.

From this point of view the ARUPS investigations of physisorbed ordered systems are interesting as in these systems the heat of adsorption is even lower. On the other hand the existence of detailed LEED studies helps to support the ARUPS results and allows a very interesting combination of low temperature physics and surface science spectroscopies.

Experimental and Results

The experimental details of our ARUPS measurements are published in detail elsewhere [8], for low temperature adsorption techniques see Ref. [9].

Our results for the systems N₂/C, N₂, CO/Ag(111) show similarities in various respects. Fig. 2 summarizes the spectra taken at normal emission for the three systems at about one complete monolayer (1 ML), respectively. Clearly the mol-
ecules are physisorbed, as their molecular ion state energy separation is nearly the same as in the gas phase [10]. In this contribution we will not consider further details like effects in the partial photoionisation cross section or like coverage dependent changes on the electronic structure, but concentrate on the spectra of the herringbone structure. As shown in Fig. 2 the most significant observation is the splitting of the 5σ, $3\sigma_g$ molecular ion states respectively. For N_2/C the splitting is 0.45 eV, for $N_2/Ag(111)$ it is 0.55 and for CO/Ag(111) it is 0.7 eV. A shoulder in the 4σ level of CO/Ag(111) indicates a split in that level too. For N$_2$/C, Ag the corresponding 2σ split is not observed, but may be a consequence of its low cross-section of the $2\sigma_g$ level. In the emission of the 1π ion state there is no indication for a splitting or shoulder at all.

Theorie and Discussion

In order to understand the splittings in the 4σ ($3\sigma_g$), 5σ (2σ) levels at normal emission, we have used semiempirical tightbinding cluster calculations for various cluster models. For parallel aligned molecules the $\pi-\pi$ interaction (overlap) dominates and a split in the 1π level of about 1.8 eV is found. On the other hand when a T-shape alignment of the molecules within the cluster is considered, the π-overlap is minimized. However, the larger overlap of the σ-orbital in the T-shaped geometry causes a split in the 4σ ($3\sigma_g$), 5σ (2σ) levels. For example, our calculations for a (CO)$_n$ cluster reveal a splitting in the neutral ground state of 0.39 eV (5σ), 0.25 eV (4σ) and is 0.53 eV (5σ), 0.38 eV (4σ) if final state screening is included.

Besides, the similar splittings for the 5σ ($3\sigma_g$) ion states the systems in discussion here [N$_2$, CO/C, Ag(111)] show even more similarities, when the dispersion of the 5σ ($3\sigma_g$) level is considered. In Fig. 3 the binding energies of the observed peak maxima (or shoulders) are plotted as a function of the wave vector component parallel to the surface, i.e. $k_x \sim \sqrt{E_{kin} \sin \delta}$ (E_{kin} is the kinetic energy of the emitted electrons, δ is the angle of detection with respect to surface normal). For all surfaces, the azimuth of the substrate was along the $\overline{1}K$ substrate direction. The dispersion is almost symmetric around $\overline{1}$ for all systems investigated. The differences may be caused by the polarization vector of the incoming light is only in the quadrant determined by the positive $\overline{1}K$ direction of the substrate. For $N_2/Ag(111)$ the $3\sigma_g$ level beyond that symmetry point again shows a splitting.

The similarities in the dispersion curves are documented not only in the common splitting at $\overline{1}$ as forementioned, they also show another symmetry point (1/3 $\overline{1}K$) of the substrate SBZ. This symmetry point is in accordance with the substrate distances a at 1/3 a (graphite: $a = 4.29\ \text{Å}$; Ag(111): $a = 4.99\ \text{Å}$) for all three systems.

As the N_2/C system has been studied by LEED [4, 5] and NSS [3], the evidence for a herringbone structure as determined by these techniques may be used as the basis to explain the results of ARUPS as reported here. Starting with the cluster models mentioned earlier, an ab initio calculation of the 2D bandstructure of an isolated N$_2$ layer forming a herringbone structure has been performed. The geometric arrangement is such that 2 molecules normal to each other form the unit cell. The next neighbor distance (center of mass) of 4.29 Å is one basis vector and is determined from the LEED data. Further details of that calculation are published elsewhere [11]. The calculated splitting at $\overline{1}$ amounts to 0.30 and 0.23 eV for $3\sigma_g$ and $2\sigma_w$, respectively. The 25 percent smaller splitting for $2\sigma_w$ is due to larger 2σ components in the wavefunction. This probably can also explain

Fig. 3

Experimentally determined dispersion of the molecular level at lowest binding energy for $N_2/Ag(111)$ ($3\sigma_g$), CO/Ag(111) (5σ) and $N_2/graphite$ ($3\sigma_g$) along the $\overline{1}K$ direction of the substrate.

Fig. 4

Calculated band structure of an isolated N$_2$ layer ordered in the herringbone structure with the distances as observed for N$_2/graphite$. The dispersion is shown along various symmetry lines within the rectangular surface Brilloun zone.
why it is not resolved in the experimental spectrum. The
resulting bandstructure along the main symmetry lines is
shown in Fig. 4. Compared to our experimental data, the
overall agreement is excellent, despite the coexistence of
three possible domains. The calculation shows the splitting
in the two σ levels at Γ. For the 2σ level the splitting is
too small to be resolved experimentally.

Agreement is achieved also at the symmetry points S and
H, where theory predicts that the levels are degenerated.
The size of the splitting at Γ is somewhat larger in experi-
ment than expected from the calculation. Further computa-
tional improvement like variation of the angle between
the molecules as well as variation of the next neighbor dis-
tance will give further insight in the details of this ordered
phase.

Summary

In summary, experimental and theoretical work estab-
lished that an ordered herringbone structure exists for N$_2$
when adsorbed on graphite in accordance to LEED [4, 5]
and NNS [3] work. Furthermore, the similarities observed
for the spectra and dispersion of the 5σ (3σ) ion states of
CO and N$_2$ adsorbed on Ag(111) are consistent with the
existence of a similar ordered phase on this metal single
crystal surface.

In the following we will discuss some of the conse-
quences of the present work. From the viewpoint of ARUPS it is
interesting to note that the size of the observed dispersion
for a given level does not depend on the adsorbate substrate
interaction. Dispersions around 0.7 eV have been observed
for CO chemisorbed on transition metals [6, 12] as well as
for noble gas atoms physisorbed on a variety of metals [7].

Another significant meaning of the work presented here
is the fact that techniques forced to use high surface area
polycrystalline materials as substrates (NNS, LEED, specific
heat - isothermes, isobares) rank up to all established surface
science techniques by the use of well defined single crys-
tal surfaces. Combining the experimental data with the sym-
metry properties of the herringbone structure as obtained
in Fig. 3, we find that for N$_2$, CO adsorbed on Ag(111) the
next neighbor distance is 4.99 Å and is commensurable with
the lattice constant as it is for N$_2$/C. This value is quite
different from that determined for N$_2$/C (4.26 Å) and may
be stabilized by that surface interaction, as discussed above.

From the numerous structures identified in LEED ex-
periments, for N$_2$/C beside the in plane herringbone structure
already mentioned, an incommensurate out of plane her-
ringbone structure, with two molecules tilted away from
the surface, is identified [14]. Since CO is a heteroatomic mol-
ecule the symmetry is lower and there exist several possible
relative orientations thus causing the existence of only one
slide plane. Understanding the absolute value of the splitting
at Γ may allow to identify the relative CO orienta-
tions. For CO/C beside the herringbone structure the so-called
pin-wheel structure is established [12]. In this arrangement
one upright standing molecule is surrounded by a ring (pin
wheel) of five in plane oriented molecules. Within the SBZ
there is one standing and three differently oriented in plane
molecules. The LEED analysis also established that for all
the observed structures the next neighbor distances do not
change significantly. For N$_2$, a tilting out of plane, and for
CO a standing up of one out of five molecules, are the
driving forces for the phase transitions mentioned above.

Clearly, our ARUPS studies are not yet able to differen-
tiate between those phase transitions where only subtle
changes in intermolecular distance occur. However, the ob-
served linewidths and dispersion curves may be blurred to
a certain extent by the coexistence of both phases under our
experimental conditions.

Nevertheless, we hope that the results presented here will
influence the understanding of the fundamental properties of
physisorption and stimulate further experimental and the-
oretical work of these very weakly bound systems.

References

(North-Holland, New York 1980).
Lett. 48, 177 (1982).
(1982).
41, 822 (1978).
[8] D. Schmeißer, F. Greuter, E. W. Plummer, and H. J. Freund,

Presented at the Discussion Meeting of the Deutsche Bunsen-Gesellschaft für Physi-
kaiserische Chemie "Phase Transitions on Solid Surfaces" in Erlangen, from Septem-