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Metal nanoparticles, dispersed on a solid support of high
surface area, form the active component of many
modern catalysts." The size of such metal species varies from
particles of several thousand” to clusters of a few atoms.>™> The
properties of (large) nanoparticles are size dependent, hence
tunable. Therefore, understanding how the reactivity of such
nanoparticles scales with size is crucial for the rational design of
new catalysts.'" However, the size dependence of some
important properties is still not well understood, even for
relatively simple and extensively studied model systems, such as
CO adsorption on Pd nanoparticles. A recent direct micro-
calorimetric measurement of the heat of CO adsorption on Pd
nanoclusters of well-defined structure showed that the initial
heat of adsorption decreases from 126 kJ mol™ to 106 k] mol™
for Pd particles ranging from on average 5000 (8 nm diameter)
to about 100 atoms (1.8 nm diameter), respectively. The
energies measured on Pd nanoparticles were always smaller
than the corresponding value for the Pd(111) surface.® An
earlier computational study of CO adsorption on Pd, clusters,
with # ranging from 260 to SS atoms, suggested a similar trend
of the adsorption energy with decreasin§ cluster size.”® In
contrast, earlier molecular beam studies”'® showed that the
adsorption energy on supported particles of 3 nm diameter and
smaller rises steeply above the asymptotic value of Pd(111).”"
These results are in contrast to those of another temperature
programmed desorption study that shows the adsorption
energy to decrease compared to the extended single crystal
surfaces, by ~10 kJ mol™ on Pd particles of 2.5 nm."!
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Although, recent accurate experimental6 and theoretical’
studies strongly suggest that CO interaction becomes weaker
as particles become smaller, at least down to sizes of 80—100
atoms with diameters of about 2 nm, an inversion of the trend
cannot be excluded for particles smaller than those investigated
before.>” In fact, supported (hemispherical) Pd particles with a
diameter of 3—3.5 nm are much too large'” to exhibit a change
in trend, which might be expected to occur with the transition
from the scalable to the nonscalable region, i.e., for nuclearities
n 2~ 100. (In the nonscalable region particles are small enough
for quantum effects to alter properties with the smallest change
in size, i.e., “every atom counts”,"® in contrast to the regime of
larger particles where scaling relations can be applied to
quantify how properties depend on particle size and approach
the bulk limit.)®

To resolve the controversy among experiments, we present
in this letter the results of density functional (DF) calculations
of CO adsorption on Pd, clusters for »n ranging from 13 to 116
atoms. The model clusters studied with adsorbed CO
molecules are depicted in Figures 1 and 2. We focused on
clusters that can be considered as models of catalytic particles
grown on thin oxide films (e.g,, Fe;0,) and terminated mainly
by (111) facets with a small fraction of (001) facets."* Metal
nanoparticles may exhibit various types of noncrystallographic
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Figure 1. Nanoclusters with CO adsorbates: Pd,s (O, symmetry),
Pd,s, Pdss (O, for $5a and D, for 55b and 55¢), Pd,; (Ds,), Pd,,, and
Pd,, (T,). Calculated adsorption energies (italic) in kJ mol™". Eight,
six/two, and four adsorbed CO molecules per cluster for models with

Oy, D3, and T,; symmetry, respectively.
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Figure 2. Subnanometer Pd clusters with CO adsorbates: Pd,;, Pd,,
Pd,y, Pd,,, and Pd,;, Pd,g; all with C;, symmetry, except 25b (Dj,).
Calculated adsorption energies (italic) in k] mol™". Pd centers of
models 22a and 25a deposited in non-fcc growth mode are shown in

dark blue.

atomic palcking.ls’16 Yet, a recent computational search for
global minimum structures of small Pd clusters showed a rather
early preference for bulk-like fcc structures based on the
octahedron Pd,,."” Moreover, an oxide support with appropri-
ately chosen structure can serve as a template for growing well-
ordered nanocrystallites of bulk-like structures.>'® Therefore,
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we considered mainly clusters of fcc-like structure (Figures 1
and 2) with the exception of models 22a and 25a (Figure 2),
where additional atoms on the facets of the octahedron Pd,
induce deviations from fcc packing.

We examined the adsorption properties of Pd clusters by
depositing CO molecules at three-fold hollow sites of closed-
packed nanofacets of (111) orientation. At low coverage on the
single crystal Pd(111) surface, three-fold sites are most
favorable for CO adsorption.'” These types of sites also
dominate larger nanoparticles, terminated mainly by (111)
facets. However, a variety of adsorption modes, including
bridge, top, and hollow, were detected for small Pd clusters
with up to 25 atoms.”® Smaller clusters obviously feature a
higher fraction of edge and vertex atoms which may bind CO
ligands in bridge or top mode.'” We focused the present study
on the question of how the adsorption strength of hollow sites
on (111) facets varies with cluster size. We addressed effects
related to other adsorption modes only in one case, model 22a.

The calculated CO adsorption energies are summarized in
Figure 3, plotted as function of n™*® (which scales as the
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Figure 3. DF calculated energies of CO adsorption, E 4 (open circles,
kJ mol™"), on Pd, clusters with n from 13 to 116 (see Figures 1 and 2)
as function of n7/3. The values for the most stable adsorption
complexes (for a given nuclearity n) are approximated by the solid line.
The scaling trend extrapolated to the limit of an infinite (111) surface
is shown as a dashed line (ref 7).

inverse of the cluster diameters). In contrast to large clusters
like Pd.o and Pd, ¢, facets of smaller particles (Figures 1 and 2)
mainly comprise Pd centers with coordination numbers less
than 9, the value for atoms on (111) facets. One can distinguish
several subseries of clusters with hollow sites formed by (i) five-
coordinated atoms, e.g., models 44, 25b, 22b,c, 19b,c, 16a,b,
and 13 (E,4 ~ 170 kJ mol™); (ii) seven-coordinated atoms in
55a,b, 40, 28, and 19a (E 4 ~ 145 kJ mol™"); and (iii) eight-
coordinated atoms in 22a and 25a (E 4, = 109, 124 kJ mol™!)."
This variety of structures is reflected in strong variations of E 4
for smaller clusters, with a rather sharp increase of E g4 for the
smallest clusters (Figures 2 and 3). The trend for the
adsorption energies of CO on (111) facets of large particles
Pd, with nuclearities n from 79 to 260 and extrapolated to the
limit of an infinite (111) surface is shown in Figure 3 as a
dashed line.”

Figure 3 obviously displays two opposite trends for the values
of E,4, for both small and large clusters. In the scalable region,
for large particles, the observed growth of CO binding strength
with cluster size, in the spirit of bonding competition, is
associated with an elongation of the average Pd—Pd distance
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and a change in the van der Waals attraction.®” To rationalize
the size dependence of adsorption energies in the nonscalable
region, we invoke the concept of orbital interactions between
CO and a transition-metal cluster. The most important effect is
due to back bonding from (localized) d-type valence orbitals of
the metal moiety to the 27* lowest unoccupied molecular
orbital (LUMO) of the adsorbate.’** Perturbation theory
suggests this interaction E 4 to be characterized roughly by

(1)

where we assume a local interaction V, essentially independent
of the particle size, in contrast to the energy gap A. As the
energy of the 27 level of CO in the gas phase is fixed, size-
dependent effects are mainly determined by the energies of the
d levels. We approximate these energies by the center g, of the
d-band,*® which shifts to larger binding energies with increasing
cluster size (Figure 4). This downward shift of ¢, is due to the
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Figure 4. Energies ¢; (eV) of the center of the d-band of Pd, clusters,
with n ranging from 13 to 116 as function of n™"/3,

decreasing fraction of low-coordinated atoms on the surface as
the cluster size increases.”*** Similarly to several other size-
dependent properties of metal clusters, this trend can be well
represented as linear function of the surface-to-volume ratio of
the clusters Pd,, measured by n~'/* (Figure 4):*%*

A(n) = A ~1/3)

ol —cn

@)

A, is the energy gap of infinitely large particles. From eq 1 one
obtains the dependence of E,4 on the nuclearity n of (small)
particles as

Eads(") = Eoo/(1 - Cn_1/3) (3)

Alternatively, one can determine E,, and c by fitting to the
results calculated for smaller model clusters. The latter
procedure yields the solid (red) trend line in Figure S, where
E,q is plotted as function of particle diameter D g = 0.384 n'/?,
assuming hemispherical particles for an improved correspond-
ence to the experiment. In this way we can fit the strongest
adsorption energies on hollow sites in the nonscalable regime
for nuclearities 13—43 by a linear regression according to eq 3
with a regression coefficient R* = 0.65. It is remarkable how
well this trend line fits the data points, keeping in mind that
one descrlbes 2 supposedly “irregular” regime where “every
atom counts”.'® Despite the simplicity of our model, this curve
very well describes the behavior of calculated E 4 values of
small clusters and intersects the trend line defined for extended
(111) facets near n ~ 40.”

Thus, as function of particle size, the interaction of CO
follows opposite trends for small (decreasing with D) and
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Figure 5. DF calculated energies of CO adsorption, E, 4, (open circles,

kJ mol™), on Pd, clusters as function of the effective particle diameter
D¢ (nm). (Data for Pd,,, and Pd,4, from ref 7 shown as filled circles).
The trend in the nonscalable size regime according to eq 3 is shown by
the solid line. The trend in the scalable size regime is shown as the
dashed line (ref 7); the dotted line represents the extrapolated value
for an infinite (111) surface.

large nuclearities n (increasing with D.g Figure S), forming an
inverted “volcano” curve that implies a change of mechanism.
For nuclearities above 100 atoms (scalable size regime), both
theoretical’ and microcalorimetrical® data agree that the
strength E,4 of the CO interaction with (111)-faceted
nanoparticles decreases with the particle size. This qualitative
agreement between experiment and theory is remarkable
because the experiment measured the heat of adsorption,
averaged over different adsorption sites, while only one kind of
adsorption sites, though obviously the most representative one,
was considered in the computational modeling. Thus the
degree of coordination of surface atoms on stepped surfaces
does not seem to be as important in determining CO
adsorption energies on Pd as on other metals, e.g, on pt.
Therefore, the increasing fraction of low-coordinated atoms
with decreasing particle size, normally expected to lead to
higher adsorption energies, does not seem to be the dominant
effect in determining how CO adsorption energies vary with
the size of Pd clusters. A direct experimental study of CO
adsorption on particles smaller than ~120 atoms, where low-
coordinated sites will affect the overall activity, was not possible
for technical reasons.®

In contrast, in the nonscalable regime, the size-dependent
behavior shown in Figure S exhibits a striking similarity to the
trend found by Henry et al. based on a kinetic analysis of
molecular beam experiments.”'® The latter studies implied a
change in the trend (increase) of E 4 values for particles from
~3.5 nm diameter and below, while according to our
calculations, this change in trend occurs for clusters as small
as 1—1.5 nm. These latter clusters with nuclearities of ~50
mark the critical size range where the dominant mechanism for
the interaction of CO with the metal species changes from
decreasing to increasing (with growing nuclearity). This size
range is somewhat below that where one normally expects the
transition from the nonscalable to the scalable regime, ~100,"
but agrees with the estimated onset for quantum effects
becoming essential.*® In their microcalorimetric study,® Camp-
bell et al. proposed that Pd particles of 1.8 nm almost reach the
large-size hmlt based on the weakness with which they bind
adsorbates.”® Remarkably, the trend to increased activity of
small clusters was found here while neglecting many other
effects that can enhance the catalytic activity, e.g, the influence
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of the support or the role of defects. Thus, the change in trend
identified results purely from effects related to the size of the
particles. Note that experimental references®® considered here
use different oxide supports for Pd particles; Fe,O, support
evidently binds metal particles stronger than MgO and, hence,
affects properties more strongly.”® Therefore, on different
supports, size effects of the same nature may occur at different
particle sizes.””

It is instructive to compare the size dependence of
adsorption properties of Pd nanoparticles with properties of
other metal particles. A recent DFT study on a series of
cuboctahedral Au clusters with nuclearities from 13 to 1415
atoms determined the adsorption energies of CO at top sites to
increase with decreasing cluster size, below nuclearities of about
100.%° Note that the electronic structure of gold differs notably
from that of palladium and many other transition metals; recall
the inactivity of bulk gold for CO adsorption.>" Clusters with
309 and more Au atoms were calculated to yield essentially the
same adsorption energy of CO or O probe adsorbates as
infinitely large surfaces,”® while for Pd in the same size range
experimental measurements, supported by theoretical predic-
tions, provide evidence for weaker interaction of CO than on a
single crystal surface.® Although only a monotonous increase of
E,q with decreasing cluster size was reported,® the computa-
tional results on Au clusters hint at a nonmonotonous size-
dependent behavior in the adsorption energies of oxygen atoms
(at fcc hollow sites), as the value calculated for Aug is
significantly smaller than for other clusters and an extended
gold surface. Recall that in the present study the lowest activity
of Pd clusters in CO adsorption was also detected in the size
range of 40—50 atoms. The highest CO binding energy,
calculated for Auy,,*® suggests a similar trend for small Au
clusters as reported in the present study for Pd clusters. The
study of Au clusters is limited to magic numbers determined by
cuboctahedral shape.*® Therefore, additional calculations on
models with nuclearities the range between 13 and 147 would
be of interest to quantify in more detail the size dependence of
CO adsorption properties. One may also refer to the
nonmonotonous activity in CO oxidation of Au nanoparticles,
supported on titania, which showed a maximum for particles of
~3 nm.*?

An important question is to what extent different types of
adsorption sites are involved in experimentally monitored
binding of CO, especially on small clusters where most surface
atoms exhibit a very low coordination number (<7 for clusters
with n < 30). We explored this issue in model 22a where the
central hollow site features a rather small adsorption energy,
only 124 kJ mol™". A stronger interaction activity may be
expected for three-coordinated sites on the side facets (Figure
2). However, our calculations suggest other modes of CO
bonding than three-fold hollow adsorption. When CO is
deposited in the vicinity of these three-coordinated Pd atoms,
the most stable position is atop, with E,4 = 127 kJ mol™;
bridge sites are slightly less stable, E,4; = 121 kJ mol™". Such
small energy differences may imply that various types of sites
coexist in experimental probes. Differences between sites of the
same cluster seem to be smaller than energy differences
between small clusters. In an earlier study we have shown that
atoms at edges of extended close-packed facets also bind CO
rather strongly.' In agreement with experimental evidence®°
these latter results show that a top adsorption can play a role on
small particles, rich in low-coordinated atoms. Evidently, the
properties and the relative importance of various adsorption
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sites deserve a special study for each given configuration and
nuclearity for those (molecule-like) clusters which comprise
only few atoms because quantum effects can entail significant
activity differences for clusters that differ slightly in size or
shape. In that size range, strong variations of activity are known
also from experiments.>>**

In summary, calculated CO adsorption energies on Pd,
nanoparticles were found to exhibit two trends regarding the
particle size n: (i) When the surface structure is dominated by
extended close-packed facets, adsorption bonds formed by CO
molecules become weaker with decreasing particle size.”” This
trend, valid for n from infinity down to about 50—100,° results
from a contraction of the lattice caused by surface stress.” (ii)
In metal clusters of less than about 100 atoms, the fraction of
low-coordinated atoms is higher and grows with decreasing
value of n. At some critical size below n ~ 50, the concomitant
upward shift of the metal d-levels induces a higher activity for
CO adsorption. Such effects of increased activity of small Pd
particles were previously found in molecular beam studies.”'
However, the present results together with recent experimen-
tal® and theoretical” studies of particles of nuclearities n beyond
100—200 suggest a reassessment of the critical cluster size,
where the adsorption activity starts to grow as clusters become
smaller. Our computational results imply a change in trend of
the CO adsorption energy at nuclearities of about 40—50 atoms
with linear dimensions of 1 nm diameter or slightly larger.
Taking into account that only three-fold adsorption sites for
CO were examined computationally and support effects were
neglected, this result is in fair agreement with the experimental
findings. In addition, it provides a rationalization for the change
in the trend of adsorption energies, including the existence of a
size region of minimum values.

Computational Methods. Relativistic all-electron calcu-
lations were carried out using the linear combination of
Gaussian-type orbitals fitting functions DF (LCGTO-FF-DF)
method™ as implemented in the parallel code ParaGauss.**’
The scalar relativistic variant of the LCGTO-FF-DF method
employs a second-order Douglas—Kroll transformation of the
Dirac—Kohn—Sham equation.>®** The geometries of Pd,
clusters, bare as well as with adsorbed CO species, and the
CO binding energies were calculated with the generalized
gradient approximation (GGA) using the revised PBE*
exchange—correlation functional. We used GGA-optimized
geometries to model consistently the adsorbate-induced
relaxation of surface sites which may have a notable influence
on adsorption energies at smaller clusters. (In previous studies
of large clusters,”'”** adsorption energies were determined for
ficed LDA-optimized geometries of the bare metal species.)
The resulting E,4 values were corrected for the basis set
superposition error, invoking the counterpoise technique.*'
The scaling relation for E,(n) in the scalable size regime
yielding a limiting E,q, value of 183 kJ mol™' for Pd(111)
surface was determined as in previous work; experimentally 147
kJ mol™! is measured for the (111) surface.®” Spin-restricted
calculations were carried out, except for Pd;;.** To exploit
symmetry in case of larger cluster models, we assumed several
CO molecules to be deposited; comparison of models 55a and
55b (Figure 1) shows that such increase of CO coverage has
only a minor effect on the adsorption energy. Other technical
details, in particular the Gaussian-type orbital and auxiliary basis
sets, have been described elsewhere.>®
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