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Abstract. Crystalline MgO films with a defined level of Cr dopants (MgOCr)
are prepared by either subsequent or simultaneous deposition of Cr and Mg
atoms in an oxygen ambience onto a Mo(001) support. The structural and
morphological parameters of the doped films are investigated using low-
energy electron diffraction and scanning tunnelling microscopy (STM). Whereas
at low Cr concentration the doped oxide has similar properties to pristine
MgO(001), a new Cr/Mg mixed oxide develops at higher Cr load. The nature
of the Cr impurities in the MgO matrix is deduced from cathodoluminescence
spectroscopy performed by electron injection from the STM tip into the oxide
film. In agreement with earlier studies on MgOCr bulk crystals, the majority of
Cr adopts a 3+ charge state and occupies Mg substitutional sites. The dopants
give rise to sharp emission lines at about 700 nm, arising from radiative electron
transitions between the Cr 3d levels split in the MgO crystal field. From
the spectral evolution upon annealing the MgOCr films, we deduce a strong
tendency of the dopants to accumulate in a near-surface region. Our experiments
demonstrate that high-quality MgOCr films with similar optical properties as bulk
samples can be prepared on conductive supports, being a first step to make doped
oxide materials accessible to surface science studies.
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1. Introduction

The elucidation of the optical properties of transition-metal impurities in wide-gap insulators
is closely connected with the MgOCr model system [1]. By using MgO single crystals doped
with Cr in the sub-percent range, the fundamental mechanisms of light absorption and emission
have been related to d–d transitions in individual Cr3+ centres sitting in Mg2+ substitutional
sites. The main emission line at 698 nm arises from magnetic-dipole transitions between the
2E and 4A irreducible representation of the Cr3+ ions in a cubic environment [2]. Additional
lines are produced by Cr3+ in non-centrosymmetric sites, being adjacent to defects or the
oxide surface [3]. The main lines are accompanied by sidebands at higher wavelengths that
reflect the presence of phonon-mediated emission processes [4]. The assignment of the various
optical transitions relies on calculations of the local crystal field in conjunction with the
dipole selection rules and has been confirmed by electron paramagnetic resonance (EPR)
spectroscopy [5].

Whereas MgOCr single crystals are ideally suited for optical measurements thanks to the
large number of optically active centres and the perfect long-range order, they are irrelevant for
surface-science studies due to their electrically insulting nature. Consequently, neither imaging
techniques with atomic resolution capabilities, e.g. electron or scanning tunnelling microscopy
(STM), nor electron spectroscopy have been used so far to characterize the position and charge
state of the Cr ions in the MgO host. A thorough investigation of doped oxide materials is,
however, mandatory when not optical but chemical properties are in the focus of research.
Doped oxides form the basis for various applications in material sciences, chemical sensing
and heterogeneous catalysis [6–8]. In the latter case, the ability of the dopants to exchange
electrons with adsorbates on the oxide surface is of particular interest, as this may constitute
the initial step for a chemical reaction. For example, oxygen radicals produced by Li+ dopants
in MgO are expected to activate gas-phase methane [9, 10], while transition-metal impurities
are involved in various oxidation and hydrogenation reactions [11]. As shown in a recent study,
Mo dopants in a CaO matrix are able to alter the equilibrium shape and charge state of metal
deposits and hence key parameters of supported metal catalysts [12]. Experiments along this
line always require finite conductivity of the oxide system and cannot be performed on single
crystals.
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The main goal of this study was to prepare MgOCr films that are thin enough to enable
conventional surface-science studies, but still exhibit the characteristic optical response of
bulk MgOCr crystals [13]. The latter is important, because the optical signature contains
information on the charge state and local environment of the dopants that is not accessible
otherwise. The main challenge was the implementation of an optical method that is sensitive
enough to probe Cr dopants in MgO films of 10–20 monolayers (ML) thickness, which
is the critical value for the electrical conductivity to break down [14]. We will show that
cathodoluminescence spectroscopy performed with an STM is the method of choice, as it
enables the simultaneous structural and optical characterization of the sample surface. Electron
injection from the tip produces optical excitations in the oxide film that can be probed with
a sensitive photon detector in the far field. Moreover, the signal can be monitored with high
spatial resolution, limited only by the diameter of the exciting electron beam. By this means,
ensembles of a few hundreds of Cr dopants can be investigated, which strongly reduces the
impact of statistical disorder and inhomogeneous broadening. Still, the optical response is
fully compatible with the results from MgOCr bulk crystals where more than 1020 centres
contribute to the signal. Our approach even allows us to identify Cr3+ ions in a near-surface
region that are subject to a different electron–phonon coupling and crystal field than their bulk
counterparts.

2. Experiment

The measurements were made in an ultrahigh vacuum (UHV) chamber (2 × 10−10 mbar)
equipped with a liquid-nitrogen-cooled STM, as well as standard tools for sample preparation
and analysis. The STM setup was specifically designed to detect photons emitted from the
tip–sample junction [15]. For this purpose, a Beetle-type head is placed inside a parabolic mirror
with the tip being in the focal point. The mirror collects light from a large solid angle and reflects
it out of the UHV chamber. A second parabolic mirror focuses the light onto the entrance slit of
the grating spectrograph (150 lines mm−1) coupled to a CCD detector. The optical setup allows
us to probe very low photon fluxes in the wavelength range 200–1200 nm.

Pristine MgO films of 15 ML thickness were prepared by Mg vapour deposition in
5 × 10−7 mbar O2 onto a well-prepared Mo(001) single crystal at room temperature [16–18].
The initially amorphous films were annealed to 1100 K for 10 min to stimulate their
crystallization. The resulting surface revealed a (1 × 1) square pattern in low-energy electron
diffraction (LEED). The cross-shaped spot profiles thereby indicated a slight mosaicity of the
film, arising from the 5% lattice mismatch between MgO and the Mo(001) support [18]. STM
images exhibited wide, atomically flat oxide terraces, being approximately 100 nm2 in size
and delimited by a network of dislocation lines (figure 1(a)). The dislocations are remnants
of the original oxide grains that merged into a closed film upon annealing, but also facilitate
the internal strain compensation in the film. The Cr was dosed onto the surface either after or
during film preparation, using an e-beam evaporator. The atom flux was calibrated with a quartz
microbalance and by dosing Cr onto bare Mo(001), where the Cr-covered surface fraction could
be readily determined with the STM.
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Figure 1. (a) STM topographic image and LEED pattern taken at 55 eV of a
pristine 15 ML thick MgO film. (b) The same surface after dosing 0.5 ML of
Cr at room temperature and (c) after annealing to 750 K (3.5 V, 120 × 120 nm2).
(d) STM image and LEED pattern of a mixed oxide, prepared by depositing 3 ML
of Cr onto 15 ML of MgO and annealing to 800 K in 5 × 10−7 mbar O2 (6.5 V,
350 × 350 nm2). The mixed phase is characterized by a granular morphology and
a (2 × 1) LEED pattern (55 eV electron energy).

3. Results and discussion

3.1. Preparation and morphology of Cr-doped MgO films

Two techniques have been developed to produce crystalline MgO films doped with small Cr
quantities. The first one starts off with Cr deposition on top of a 15 ML thick MgO/Mo film that
is annealed afterwards to stimulate Cr diffusion into the surface. Figure 1(b) displays a typical
starting configuration with 0.5 ML Cr dosed onto the surface. The metal preferentially nucleates
at MgO line defects, producing linear assemblies of small aggregates with roughly 1.6 nm
diameter. This nucleation preference reflects the enhanced binding potential of chemically
unsaturated defect sites, as analysed in detail in earlier studies [19, 20]. Only 15% of the Cr
deposits are found on the oxide terraces, where the mean particle diameter is somewhat larger
(2.5 nm). With increasing Cr exposure, new particles nucleate on the oxide terraces, while
deposits along the defect lines only grow in size. Heating such ensembles at 800 K in UHV
causes the mean particle diameter to shrink, while their density remains constant due to an
effective pinning to the oxide defects (figure 1(c)). The decrease in particle volume is assigned
to two effects. Whereas part of the Cr sublimates into the gas phase, a smaller fraction penetrates
the oxide film using the MgO dislocation lines as the diffusion channel. At temperatures beyond
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Figure 2. STM topographic images of Cr/Mg mixed oxides on Mo(001) after
annealing to 1000 K (35 × 35 nm2, 1.5 V). The Cr concentration rises from (a)
0.05%, (b) 0.5% to (c) 1%, producing an increasing number of atom-sized
holes in the surfaces. (d) Mixed Cr/Mg oxides with 10% dopant concentration
(200 × 200 nm2, −6.5 V). The insets show a single roof-like grain (25 × 25 nm2)
and the LEED pattern of the corresponding sample.

1000 K, the Cr aggregates completely disappear from the surface, but without recovering the
initial MgO surface morphology. In fact, the film now exposes a characteristic granular structure
with typical grains of 20–50 nm diameter and 2–3 nm height (figure 1(d)). This morphology
change is accompanied by the occurrence of a new LEED pattern, which displays a faint
(2 × 1) superstructure in addition to the fundamental (1 × 1) MgO spots. We note that the
surface restructuring becomes more pronounced at higher Cr loads and if the annealing step
is performed in 5 × 10−7 mbar O2. We will show later that both the new morphology and the
(2 × 1) LEED pattern reflect the formation of a Cr/Mg mixed oxide on top of the MgO(001).

The main drawback of producing doped MgO samples via inter-diffusion is the
inhomogeneous distribution of Cr inside the film and its accumulation at the surface. A more
regular distribution is achieved by inserting the dopants directly during oxide growth. To explore
this route, we have exposed a clean Mo surface simultaneously to a constant Mg and a variable
Cr flux in 5 × 10−7 mbar O2 followed by an annealing step in UHV. The resulting surface
morphologies, measured as a function of Cr concentration, are shown in figure 2. For dopant
levels below 0.1 at.%, pristine and doped MgO exhibits the same surface topography regarding
terrace size and film smoothness. A small number of atom-sized depressions is detected on top
of the films (<5 × 1011 cm−2), which increases to ∼5 × 1012 and ∼2 × 1013 cm−2 with the Cr
concentration rising to 0.5 to 1%, respectively (figures 2(b) and (c)). Still, the MgO rocksalt
structure is maintained for light doping and the sample exhibits the characteristic (1 × 1) LEED
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pattern. The surface constitution changes, however, for Cr concentrations above 5%, when the
granular morphology appears again in STM and a (2 × 1) LEED pattern with two orthogonal
domains becomes visible in LEED (figure 2(d)). The observed grain size in this case depends
on the initial Cr load, reaching about 20 nm for 10% nominal Cr concentration. Apparently, the
same surface morphology is obtained when annealing either a Cr/MgO ad-system or a mixed
MgOCr film if only the initial doping level is sufficiently high.

3.2. Optical characterization of Cr-doped MgO films

Further information on the MgO systems doped via one or the other approach is obtained
from cathodoluminescence spectroscopy, using the known emission response of bulk MgOCr
as a reference [1, 3]. Photoluminescence, a more common technique, is not applicable to the
15 ML films used here due to the low number of active centres and the opaque nature of the Mo
substrate. The cathodoluminescence spectra were taken by electron injection from the negatively
biased STM tip at ∼100 nm distance from the surface into a pre-selected sample region. The
electron energy was varied between 50 and 300 eV. Whereas below 200 eV, long detection times
were required to obtain spectra with a good signal-to-noise ratio, large numbers of defects
were created in the surface at higher energy, most likely due to electron-induced desorption
of oxygen [21]. As a compromise between emission cross section and surface damage, we
acquired most of the spectra with 200 eV excitation energy. Still, photon accumulation times of
300 s and large spectrometer slit widths had to be used to account for the low photon fluxes,
limiting the spectral resolution to about 1λ = 10 nm.

Figure 3(a) shows three cathodoluminescence spectra taken on a pristine MgO film (top),
after exposure to 0.5 ML Cr (middle) and after annealing to 1000 K in UHV (bottom). The
topmost spectrum is characterized by a broad emission band at 410 nm, originating from
the radiative recombination of MgO excitons at threefold coordinated oxygen ions [22, 23].
The relevant exciton traps are located along the dislocation network of the MgO films, as
proven by the quenching of the characteristic light emission via depositing small amounts
of gold that also nucleate on the line defects [24]. Similarly, the MgO emission disappears
after Cr dosage, because the exciton recombination centres become covered as well. However,
whereas the Au deposits generate a strong plasmonic excitation on their own, Cr-covered MgO
films are optically inactive [25]. The photon signal reappears after annealing such samples to
1000 K, when a faint emission line emerges at ∼700 nm. According to the STM, most of the
Cr evaporates during this treatment while a small part penetrates the film, as suggested by the
700 nm emission peak that matches the optical fingerprint of bulk MgOCr [1]. The new band
gains in intensity if more Cr is loaded onto the surface and the annealing is performed in
O2 (figure 3(a), bottom curve). Samples prepared in this way are characterized by a granular
surface morphology and a (2 × 1) LEED pattern, as shown in figure 1(d). We note that the
410 nm emission peak does not reappear upon annealing, because the exciton recombination
sites remain blocked by Cr remnants.

Mixed MgOCr films, prepared by Cr and Mg co-deposition in an O2 atmosphere, display a
similar optical response. Already at low Cr concentration (0.05%), a small shoulder at 700 nm
appears next to the broad exciton-mediated emission band at 410 nm (figure 3(b), top). At
this dopant level, statistically only 500 Cr centres are probed by the impinging electron beam.
With increasing concentration, the MgO emission quickly fades away, proving the site-blocking
effect to be active again, while the Cr-related signal gains in intensity. Starting from 1% doping
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Figure 3. (a) Cathodoluminescence spectra measured on a pristine 15 ML thick
MgO film, an MgO film covered with 0.5 ML Cr and the same film after
annealing to 1000 K (from the top). The bottom spectrum has been taken after
annealing 3 ML Cr on 15 ML MgO in oxygen at 800 K. (b) Similar spectra
measured for 15 ML MgO films homogeneously doped with the given Cr
amounts. All spectra have been taken with 200 eV electron energy, 5 nA current,
300 s integration time and 1 mm slit width of the monochromator.

level (around 10 000 Cr centres in the beam), spectral fine structure appears and the 700 nm
band splits into two pronounced maxima at 698 and 717 nm and a few kinks that are not
resolved by our grating spectrograph2. Below 10% Cr content, the spectral shape remains
essentially constant despite the massive surface restructuring observed in the STM (figure 2(d)).
The intensity course can still be disentangled into two main bands at 698 and 717 nm and a
third broad peak at 820 nm. With even higher Cr loading, the 700 nm emission fades away,
reflecting the development of a thick and ill-defined chromium oxide layer on top of the
MgO film.

The optical response of mixed MgOCr films has additionally been probed for different film
preparations, in particular for different annealing temperatures. Such a spectral series is shown
in figure 4(a) for a 15 ML thick film doped with 1% Cr. This doping level was chosen as it
guarantees the integrity of the MgO rocksalt lattice while maximizing the emission yield. Both
the total intensity and the ratio between the two main bands at 698 and 717 nm were found
to change with temperature. At 800 K, which is the onset temperature for crystallization, the
integral emission is low and both bands appear with similar intensity. At higher temperature,
mainly the high-wavelength band increases until it dominates the spectrum for films annealed
to 1100 K. We will show later that this spectral evolution is compatible with the accumulation
of Cr at the MgO surface. Further insight into the nature of Cr-induced light emission is gained
from experiments performed at two different film thicknesses, 15 and 100 ML (doping level 1%)
(figure 4(b)). The latter sample could no longer be imaged with STM due to the low conductivity,

2 The experimental peak positions are generally red-shifted by 5–8 nm due to the linear Stark effect induced by a
tip electric field of approximately 1 × 109 V m−1.
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Figure 4. Cathodoluminescence spectra of MgO thin films doped with 1% Cr,
measured as a function of the annealing temperature (a), the film thickness
(b) and the energy of the exciting electrons (c). The inset shows the increase of
emission yield with electron energy. Whereas spectra on 15 ML films have been
measured with 1 mm slit width, 0.1 mm slits have been used for the 100 ML films
(5 nA electron current). The widths of the main emission lines at 698 and 717 nm
are still governed by the diffractive power of our spectrograph.

but displayed the characteristic MgO(001) LEED pattern. The emission yield was found to
be ten times larger for 100 ML than for 10 ML thick films, which is explained by the higher
number of Cr centres and their superior decoupling from the Mo support that offers effective
non-radiative decay channels. The intense emission from thick films allowed us to improve the
spectral resolution by reducing the monochromator slit width to 0.1 mm. However, even those
settings were insufficient for resolving the fine structure of the main bands at 698 and 717 nm,
and only two additional features were detected at 683 and 707 nm. In a final experiment, we have
explored the dependence of the 700 nm emission lines on the kinetic energy of the incoming
electrons (figure 4(c)). The threshold energy that produced a detectable photon flux at 5 nA
current was determined to be 50–70 eV, depending on the quality and sharpness of the STM
tip. With increasing energy, the photon signal rises exponentially but flattens out above 200 eV.
The monotonic intensity course is interrupted by a step at ∼250 eV, at which the intensity
nearly doubles. We note that similar excitation behaviour has been found for excitons in bare
MgO(001) films before.

3.3. Discussion: structural aspects

For the sake of clarity, we analyse the structure and morphology of MgO films with homoge-
neous Cr distribution (mixed films) first and discuss the ad-systems that feature Cr enrichment
at the surface thereafter. Both LEED and STM measurements indicate a weak perturbation
of the MgO rocksalt structure at Cr levels in the sub-percent range. The most obvious dop-
ing effect is the occurrence of atom-sized holes on the surface, which start appearing at 0.1%
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Cr load and evolve to the most abundant defect type above 1% Cr concentration (figure 2).
Those features are assigned either to Cr impurities that have segregated to the surface upon an-
nealing or to Mg vacancies that are known to be present in MgOCr [1, 26]. The vacancies form
in the oxide lattice to compensate for the charge difference between the Cr3+ dopants and the
substituted Mg2+ ions. According to EPR and optical measurements, the missing electron cannot
be stabilized in the high-spin Cr system, as the hosting orbital already overlaps with the MgO
conduction band [2]. To avoid the presence of high-energy electrons, trap states are produced in
the band gap by introducing Mg defects into the oxide lattice. Each vacancy creates two low-
lying hole states in adjacent O ions that are filled with excess electrons of two Cr3+ donors. The
concept of mutual interactions between the Mg vacancies and the Cr centres has been success-
fully used to describe the optical and spin spectra measured on MgOCr bulk samples, providing
solid evidence for the anticipated Cr3+ charge state [27].

An unambiguous assignment of the hole features observed in the STM to either Cr
impurities or Mg vacancies is difficult at this point. We favour the second option, because
the defects appear as plain depression in the accessible bias range, while foreign species
should exhibit a bias-dependent contrast due to the availability of new electronic states for
tunnelling [28, 29]. Moreover, the formal positive charge of the Cr3+ ion would induce a local
downward bending of the MgO bands, which increases the accessible state density at positive
sample bias and gives rise to protruding features, in contrast to the experimental findings [30].
We therefore suspect that the observed defects are indeed Mg vacancies that have segregated
to the surface upon annealing. The efficiency of this process can be estimated by comparing
the initial Cr load with the number of voids in the surface (figure 2). For 1% Cr concentration,
2 × 1013 surface defects are found per cm2, which accounts for ∼25% of the required vacancies
to achieve charge neutrality in the MgO film. We note that vacancy accumulation on the surface
has been identified for Li-doped MgO films before, with the difference that O and not Mg
defects are created in that case due to the undervalent nature of Li [31].

The segregation process described above also promotes Cr enrichment in a near-surface
region of MgO. If a critical dopant level is reached, the Cr ions can no longer be incorporated
into the rocksalt lattice and a new Cr/Mg mixed oxide develops on the surface. The
thermodynamically most stable composition of the three elements is MgCr2O4 (magnesium
chromate), with Cr3+ and Mg2+ ions sitting in octahedral and tetrahedral positions of a cubic
O2− lattice, respectively [32]. The growth of this phase is supported by the (2 × 1) LEED pattern
observed for Cr-rich samples, as the MgCr2O4 lattice parameter is nearly twice as large as that
of MgO(001) (0.83 nm versus 0.42 nm). The residual strain might prevent good epitaxial growth
along both the MgO〈100〉 directions and no (2 × 2) registry is detected. Such a unidirectional
growth of the chromate is also in line with the STM data that show regular stripes in one
MgO direction but a dense step pattern in the other (figure 2(d)). This grain morphology might
be explained as MgCr2O4 sheets stacked along one MgO〈100〉 direction. Due to the fourfold
symmetry of the MgO lattice, two orientations are possible in accordance with the two (2 × 1)
domains seen in LEED. Our MgCr2O4 structure model can only be tentative and needs to be
confirmed by additional experimental techniques, e.g. grazing-incidence x-ray diffraction. A
similar mixed oxide seems to develop upon annealing a Cr particle ensemble to more than 800 K
in O2, as shown in figure 1(d). In this case, the critical Cr/Mg ratio for chromate formation is
reached via Cr diffusion into and Mg diffusion out of the MgO support. The similarity of both
phases despite different preparation procedures underlines the energetic preference of MgCr2O4

with respect to other Cr/Mg/O compounds.
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3.4. Discussion: optical properties

Weakly doped MgOCr single crystals have been intensively studied with both absorption
and emission spectroscopy, providing a solid basis for the interpretation of our thin-film
data [1, 3, 33]. The most intense emission is usually the R line at 698 nm that relates to 2 E →

4A2

transitions in Cr3+ ions placed at Mg2+ substitutional sites with octahedral symmetry [2].
Additional bands appear for dopants in low-symmetry lattice positions, i.e. next to a Mg
vacancy, where the initial 2 E state gets split and the emission moves to higher wavelength
(N lines at 699–703 nm). Another broad peak is detected at ∼800 nm that originates from
4T2 →

4A2 transitions in the Cr d manifold and only shows up if the 4T2 level shifts below the
2 E as expected for Cr3+–Mg vacancy pairs aligned with a MgO[110] direction [34]. Both the
R and N lines are accompanied by vibronic sidebands, i.e. the original line is downshifted by
the energy of a typical MgO phonon [4]. Several of those bulk MgOCr transitions are indeed
identified in the emission spectra of our thin films. At low Cr concentrations (0.5%), only a
single broad photon peak is resolved at 700 nm, covering the wavelength region of the R and N
lines and their respective sidebands (figure 3, upper spectra). Due to the low emission yield of
weakly doped films and the need to work with large spectrometer slit widths, no fine structure is
resolved in this case. Starting from 1% doping level, the 700 nm peak can be disentangled into
several bands that are best resolved for the highly luminescent 100 ML thick films (figure 4(b)).
The most intense peaks at 698 and 717 nm are assigned to a convolution of the zero-phonon R
and N bands and their respective phonon sidebands. We note that a tenfold larger diffraction
power would be necessary to separate these bands with our spectrometer. The slow decay of the
photon intensity beyond 740 nm indicates the presence of another peak at higher wavelength,
which can be fitted with a Gaussian of 100 nm width and 820 nm central wavelength. Given the
limited spectral resolution, this peak is in reasonable agreement with the emission characteristic
of [110]-oriented Cr3+–Mg vacancy pairs in bulk MgOCr samples.

The overall spectral shape does not change for Cr concentrations beyond 1%; however,
the fine structure in the 700 nm region becomes more complex and an assignment of the
optical transitions more difficult (figure 3, lower spectra). We take the spectral complexity as an
indication for the increasing inhomogeneity of our samples with more Cr3+ ions occupying low-
coordinated sites adjacent to Mg vacancies and the surface. The associated symmetry reduction
modifies the local crystal field acting on the Cr 3d states, but also alters the dipole selection
rules and therewith the visibility of certain transitions. In addition, exchange coupling between
adjacent Cr centres becomes a relevant parameter at high dopant concentrations [35]. Even if
MgCr2O4 grains start growing on the surface at 5% Cr level, the spectral response remains
unchanged. This finding might be explained by a similar local environment of the Cr3+ in doped
MgO and the chromate phase, as the ions occupy octahedral sites in the cubic O lattice in both
cases. In fact, the emission properties of Cr3+ in various compounds, such as ruby, emerald and
alexandrite, were found to be similar despite pronounced structural differences [36]. Moreover,
the emission signature of the MgCr2O4 grains cannot be separated from the signal of isolated Cr
species in the MgO, as both elements always coexist in our samples. We therefore refrain from a
detailed interpretation of the emission spectra obtained for Cr-rich samples and just emphasize
that the general emission course is similar for systems produced by annealing a Cr ad-layer or
embedding Cr into an MgO film (figure 3).

Focusing on lightly doped films again, one immediately realizes the high intensity of the
phonon sideband at 717 nm with respect to the zero-phonon line. In photoluminescence spectra
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obtained on bulk MgOCr, the zero-phonon line is typically four times stronger than the phonon
line due to the small Huang–Rhys parameter of MgOCr, which compares to a ratio of 0.75 in
our case [1]. We ascribe this intensity boost of the phonon sidebands to two effects. First, the
electrons in cathodoluminescence spectroscopy interact vigorously with the oxide ions and
effectively excite lattice phonons [37]. Radiative recombination therefore takes place in a vibra-
tionally highly excited system, giving rise to intense phonon lines. The importance of inelastic
interactions between impinging electrons and MgO phonons is supported by the experimental
result that the intensity ratio between zero-phonon and phonon lines declines with increasing
energy, i.e. the phonon contribution becomes stronger at higher excitation energies (figure 4(c)).
The second reason concerns the position of the dopants inside the film. We expect the Cr ions
and associated Mg defects to accumulate in a near-surface region, where the vacancy formation
energy is lower and the structural flexibility of the MgO lattice is higher [31]. Recombination
processes in near-surface Cr3+ species are particularly affected by interactions with the lattice
phonons. On the one hand, the surface phonons are softer and produce larger spatial displace-
ments of the ions [38, 39]. This leads to a temporary lowering of the cubic symmetry of Cr3+

centres, which releases the dipole selection rules and increases the phonon-mediated emission
cross section. On the other hand, electron–phonon coupling is known to be larger at the
MgO(001) surface compared to the bulk [40], which again intensifies the phonon contribution.
A local heating of the MgO under the electron beam, as an alternative explanation for the
strong phonon sidebands, is discarded here because of the low dissipated power (<1 µW) and
the good thermal contact between MgO films and Mo support [41]. Assuming the sample to
be bulk MgO, we estimate the local heating to be below 50 K under the given experimental
conditions.

An indirect proof for the close interrelation between strong phonon sidebands and Cr
accumulation on the surface comes from annealing experiments as shown in figure 4(a). When
heating a 1%-doped MgO film from 800 to 1100 K, the total emission increases, but more
importantly the phonon sideband gains in intensity. Whereas the first effect reflects the improved
crystallinity and the absence of non-radiative decay channels in well-annealed films, the second
one arises from the segregation of Cr species to the surface. As pointed out earlier, near-
surface dopants are subject to much stronger phonon-assisted emission processes than bulk
species sitting in a perfect octahedral environment [37]. We note that this interpretation is fully
supported by STM images taken during the annealing series, which also reveals an increasing
density of atom-sized depressions on the surface.

In the last section of this work, we want to address the excitation mechanism for MgOCr
luminescence via electron impingement (figure 4(c)). Strikingly, no emission is detected at
electron energies below 50 eV, although all relevant Cr d transitions occur below 3 eV energy.
We suspect that direct energy transfer from the incoming electrons to the Cr electronic system
is inefficient, most likely because of the dipole-forbidden nature of transitions inside the d-state
manifold. At higher initial energy, a multitude of indirect excitations become accessible, e.g.
electron–hole-pair excitations in the MgO host, Auger transitions in the Cr3+ and the MgO, as
well as impact ionization [42]. For example, the ionization thresholds for the Mg 2s, p, the
O 2s and the Cr 3p levels are all about 50 eV. Moreover, each incoming projectile produces a
cascade of secondary electrons that are able to interact with the Cr centres as well. On the other
hand, not every excited Cr centre with an electron in high crystal-field states necessarily emits
a photon, as non-radiative recombination channels such as multi-phonon emission and Landau
damping via the Mo support are also available. It is the sum of all those effects that renders
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a low-energy stimulation of the Cr dopants impossible and puts the threshold energy for light
emission to ∼ 50 eV. We cannot decide at this point whether this threshold is intrinsic to the
decisive excitation step in the MgOCr system (e.g. the creation of a deep hole) or due to the
insufficient detection sensitivity of our optical setup.

Beyond the threshold, the emission intensity rises exponentially first but flattens out at
higher energy. The exponential increase is compatible with the excitation cross section of
many intermediate steps, e.g. the creation of secondary electrons and electron–hole pairs by
the incoming projectiles. In addition, the tip–sample distance, and hence the excitation volume,
increases with electron energy, moving more and more Cr species into the beam. The subsequent
flattening of the emission rise indicates a lower excitation probability at higher energy, as
expected once the electron free-mean path exceeds the film thickness [43]. Above 100 eV
injection energy, also a degradation of the MgO film, e.g. due to oxygen desorption, can no
longer be excluded. The pronounced step in the energy-dependent emission yield at 250 eV has
not been analysed in detail so far. No Auger or ionization thresholds are available in the Mg, O
or Cr ions at this energy; however, the ionization threshold of the Mo 3d states is about 250 eV.
The involvement of the Mo support, e.g. via secondary electrons that temporarily occupy the Cr
electronic system, might therefore explain the pronounced step in the excitation cross section.
An experimental proof for this scenario, for instance by probing the emission yield as a function
of the MgO film thickness, is, however, beyond the scope of this paper.

4. Conclusion

By means of STM, LEED and cathodoluminescence spectroscopy, we have demonstrated that
well-defined MgOCr films can be grown on a Mo(001) single crystal. In weakly doped films,
the presence of surface Mg vacancies that balance the Cr3+ charge state with respect to the
substituted Mg2+ ions is the sole morphological fingerprint for Cr incorporation. At higher Cr
load, a granular structure becomes visible in the STM, being ascribed to a new MgCr2O4 phase
that forms on the MgO surface. In contrast to structure-sensitive approaches, the doping effect is
evident in light emission spectra of the MgOCr system. In good agreement with earlier studies on
doped bulk crystals, the Cr centres introduce several photon bands between 698 and 820 nm. Our
STM-based optical technique allows us to detect these dipole-forbidden and hence notoriously
weak optical transitions in oxide films of 15–100 ML thickness. Furthermore, distinguishing
between Cr ions in the sub-surface and bulk regions of the film becomes possible due to the
different phonon contributions in both cases. So far, stimulation of the photon emission has
been feasible only for relatively high electron energies, which is responsible for the low spatial
resolution of our method. This drawback might be overcome in future by combining optical
and electronic excitations of the dopants and would enable us to characterize small ensembles
or even single Cr ions in the MgO host. By this means, the optical response of impurity ions
might be connected with their position inside the MgO lattice, providing useful information on
the local distribution and charge state of dopants in oxide films.
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