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ABSTRACT 

First, we show that the quantity a(i) = AEA(kii) -I- ahE, - AR,(k) is directly 
related to the final state relaxation contribution AR(i) of the binding energy shift AZ&(i). 
AE~(kii) is the kinetic energy shift of the Auger transition which corresponds to the 
decay of a hole state with a hole in level k into a final state with two holes in level i. The 
shift parameter Afl(i), which is based on information on two binding energies, is con- 
ceptually similar to Wagner’s Auger parameter. To establish the relation between A&i) 
and AR(i) one needs, however, less drastic approximations than in the case of Auger 
parameter shifts. The only approximation necessary is the assumption that AR(i) is 
determined by coulomb contributions. 

Secondly, we use Afl(i) to analyse the experimental data of eighteen gaseous phos- 
phorus-containing compounds obtained by Sodhi and Cavell*. It is shown that AR(PQ,) 
is strongly related to changes in the polarizability of the ligands. The initial state effects 
derived from our study deviate from those expected on the basis of simple electro- 
negativity considerations. 

INTRODUCTION 

In spite of the highly developed methodology of modem spectroscopic 
methods we have only very limited possibilities to probe the local character 
of the electron distribution in a molecule or a solid. Most of the methods 

*See ref. 1. 
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which are useful for this purpose are either limited to special nuclei, like 
Mijssbauer spectroscopy [2], or they have difficulties with nonlocal con- 
tributions, like most kinds of NMR spectroscopy [3]. Binding energies of 
inner shell electrons which became experimentally accessible by X-ray 
photoelectron spectroscopy [ 41 have therefore been extensively studied as a 
new source for this type of information [4]. Since an inner shell electron is 
highly localized at a given nucleus, its energy is expected to be strongly 
related to the electron distribution around this nucleus. With ab initio 
calculations it was indeed possible to verify a direct relation between the 
orbital energy of inner shell electrons and the electrostatic potential which 
is created by the valence electrons [5] . This relation is the basis of all kinds 
of “potential models”. In these models, the potential is usually approxi- 
mated by the “potential at the nucleus”. In the “point charge approxi- 
mation” the potential is constructed from charges localized at the position 
of the different nuclei. The point charge model is specifically attractive for 
chemists, since the concept of partial atomic charges which in itself is 
connected to the concept of electronegativity is one of the fundamental 
concepts in chemistry, even though its theoretical justification is still under 
discussion [ 61. 

The problem in the use of binding energies as a probe for local structures 
in the electron distribution is connected with the fact that the binding 
energy is the difference between the energy of an initial and a final state. 
Only in the frozen orbital approximation, where all the remaining electrons 
are not influenced by the removal of the inner shell electron under con- 
sideration (Koopmans’ theorem [ 71) do we find a direct relation between 
orbital energy E (i) and binding energy E, (i) 

E,(i) = - ei (1) 

It is only in this approximation that the binding energy is directly related 
to the electron distribution of the initial state. To correct for the approxi- 
mations that lead to eqn. (1) the exact binding energy is usually expressed 
as PI 
E,(i) = -fi -Ri (2) 

The relaxation energy Ri is the energy obtained from a gedankenexperiment 
where we first remove an electron from orbital i keeping all orbit& frozen 
and then allow the whole electron system to adjust to the vacancy now 
present in orbital i. Following this picture we usually speak of a “final 
state relaxation effect”. In most applications we use a differential form of 
eqn. (2) 

AE, (i) = - Aei - AR; (2a) 

Equation (2a) relates changes in binding energy - the so-called binding 
energy shifts - to changes in orbital energies and changes in relaxation 
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contributions. Aei is the initial state contribution to AEB, and ARi is the 
final state contribution. Binding energy shifts are therefore influenced by 
initial and final state effects. To derive information on the charge distri- 
bution of the initial state, it is necessary to disentangle the two contri- 
butions. Two strategies have been developed to deal with this problem. 

(i) The development of such models as the relaxed potential model 
(RPM) or the transition state model (TSM) which take relaxation into 
account. Comparison of the resulting binding energies with those predicted 
in the frozen orbital approximation then allows separation of initial and 
final state effects. A recent survey of these models has been given by Sodhi 
and Cave11 [ 11. 

(ii) The search for combinations of experimentally accessible quantities 
which depend only on initial or only on final state effects. 

Following (ii), Wagner [ 9a,b] has proposed the relation 

Acu(i) = A[E,(i) + EA] = 2ARi (3) 

which has been widely used. Aa is the so-called “Auger parameter shift”. 
It is the sum of a binding energy AE, (i) as observed in photoemission and 
the kinetic energy shift of an Auger signal (.AE,), both measured with 
respect to a certain standard. A great advantage in the use of Aa, is its appli- 
cability to insulating solid samples: when we obtain AE, (i) and AEA from 
the same sample under the same measurement conditions both values are 
affected equally by sample charging. Since (x is derived from the difference 
of two kinetic energies (EB (i) = hv - EEz(i)), the influence of sample 
charging cancels out and Aa values can be compared for charged samples. 

The problem connected with the application of eqn. (3) results from a 
basic approximation used in its derivation. It is assumed that the binding 
energies of all inner shells shift by an equal amount with changes in the 
chemical environment or, as it is usually called, the “chemical state” of the 
atom considered. From the recent results of Sodhi and Cave11 [l] it is, 
however, obvious that this assumption is not justified in general. We there- 
fore propose a new relation 

Ap(i) = A[2EB (i) -E, (k) + EA (kii)] = 2ARi (4) 

which should provide better experimental estimates for relaxation contri- 
butions. Since we no longer assume all inner shell orbital energies shift by 
the same amount it is necessary to specify the Auger process in eqn. (4): k 
refers to the primary hole, i.e., the initial state for the Auger decay, while 
i denotes the level which carries the holes in the final state of the Auger 
process. With this specification the relaxation contribution AR, is well 
defined and only refers to a given level i. The derivation of eqn. (4) is dis- 
cussed in the next section. We then apply eqn. (4) to the experimental 
data given by Sodhi and Cavell [l] and compare the results derived from 
this equation to those obtained with other methods. 
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THEORETICAL FRAMEWORK 

For the following we denote inner shell orbitals by i, j, . . . and not by the 
usual X-ray labels K, L, . . . In the limit of complete relaxation [lo] the 
energy of an Auger transition is given by 

EA (kij, X) = - Ei*j* (X) + E,* (5) 

E,* is the energy of a state with a hole in orbital k. Correspondingly, Et*,* 
is the energy of a state with a hole in i and a second hole in j. X denotes the 
specific state which results from the open shell interaction of the two 
vacancies. Denoting the ground state energy of the initial system which has 
no vacancies by E, , we obtain for the initial state of the Auger decay 

Eh* = E, + E,(k) (6) 

EB (k) is the binding energy of the k electron which can be measured in 
photoemission. Similarly, the energy of the final state of the Auger transition 
can be expressed as 

Ei*j* (X) = E, + EB (i) + E, (ji*, X) = E, + EB (j) + E, (ij*, X) (7) 

Here E, (ji*, X) is the energy necessary to re&move an electron from orbital j 
of a system which already has a vacancy in orbital i. From eqns. (6) and (7) 
we obtain the following expression for the kinetic energy of the electron 
emitted in an Auger process 

EA (kij, X) = E,(k) -E, (i) -E, (ji*, X) 

= E, (k) - EB (j) -E, (ij*, X) 

Expressing the binding energies as in eqn. (2) yields 

(8) 

E, (kij, X) = - ek -Rk + Ei + Ri + Ej(i*) •I Rj(i*, X) 

= -ek-R~, + ej + Rj + e,(j*) + Ri(j*, X) (9) 

ei (i*) is the energy of orbital j in a system which has already lost an electron 
from another core orbital i. Correspondingly, Rj(i*) is the relaxation energy 
for a state which already had a vacancy in orbital i and from which a second 
electron is then removed from orbital j. 

Equation (9) is widely used in connection with RPM and TSM applications 
(see ref. 1 and references given therein). For our purpose eqn. (9) is not 
suitable, since Ej(i*) is not directly related to the initial state without vacan- 
cies. Therefore, eqn. (9) is not appropriate to separate initial and final state 
effects. Instead of eqn. (9) we use a different description for the final state 
of the Auger transition, a description already discussed by Shirley [ 111 

Ei*j* (X) = E, - Ei - Cj - Rij + F(g, X) (10) 

In this case we describe the final state of the Auger process in such a way 
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that we remove an electron from orbital i and another electron from orbital 
j within the frozen orbital approximation. By F (ij, X) we take into account 
the interaction between the two open shells which leads to the specific 
state X. Finally we consider the adjustment of the remaining electrons to 
the two holes. This adjustment yields a relaxation energy Rij. From eqn. (10) 
we obtain the following expression for the kinetic energy of the Auger 
electron 

E, (kij, X) = - Ek + Ei + Ej - Rk + Rij - F(ij, X) (11) 

All three orbital energies now refer to the initial state of the system. We 
proceed by selecting a special Auger process, namely one for which the 
two holes in the final state are in the same orbital i, and combine the corres- 
ponding Auger kinetic energy with the binding energies E,(k) and E, (i). 

This yields 

/3(i, X) = E, (kii, X) + 2E, (i) - EB (k) = - 2Ri + Rii - F(ii, X) 

With 

(12) 

EB (i, k) = 2EB (i) - EB (k) 

we find 

(13) 

p(i, X) = E, (kii, X) + E, (i, k) (14) 

For p we have dropped the index k since 0 no longer depends on 12. Similarly 
to o, /3(i, X) does not depend on sample charging as long as the Auger kinetic 
energy and the two binding energies are derived from the same sample under 
the same experimental conditions. In terms of energy differences we obtain 

Ap(i, X) = AE, (kii, X) + 2AE, (i) - AEB (k) 

= - 2ARi + ARii - AF(ii, X) (15) 

AF(ii, X) can be neglected if the Auger transition only involves inner shell 
electrons. F (ik, X) determines the splitting and the intensity distribution 
within a given Auger multiplet. For Auger transitions which do not involve 
valence electrons, changes in the chemical state lead usually only to a shift 
of the multiplet as a whole and not to changes in the multiplet structure. 
This shows that changes in the F(ik, X) have to be small. The same argument 
has been used by Wagner [9a,b] and by Aitken et al. [ 121 in their derivation 
of eqn. (3). The argument, however, is no longer applicable when valence 
electrons take part in the Auger transition. In this case the multiplet struc- 
ture often shows pronounced chemical state dependence [13]. Neglecting 
AF(ii, X) we obtain 

A/3(i) = - 2ARi + ARii (16) 

We have dropped the state symbol X since eqn. (16) applies only to cases 
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where the Auger kinetic energy shift does not depend on the specific state 
from which the shift is derived. 

We now make use of the assumption that differences in relaxation energies 
are dominated by classical coulomb contributions. With this assumption 
the relaxation contribution ARii for a system with two vacancies in the inner 
shell orbital i is four times as large as the relaxation contribution ARi for a 
system with only a single vacancy in this orbital 

ARii = 4ARi (17) 

Using this approximation we immediately obtain eqn. (4) from eqn. (16). 
The classical model, in which screening is assumed to be quadratically 
dependent on the charge, has been successfully used by Mott and co-workers 
[14] in connection with energetic considerations on sodium halides. It is 
also inherent in all derivations of eqn. (3). An interesting experimental 
confirmation for the applicability of this approximation has been found by 
Kaindl and co-workers [ 151 from the study of rare gas adsorbates on transi- 
tion metal surfaces. For these adsorbates initial state effects are considered 
to be small since rare gas atoms are only weakly bound to transition metal 
surfaces. Application of eqn. (17) together with the approximation ARi = 
ARI, leads to the prediction that in the case of negligible initial state con- 
tributions the Auger kinetic energy shift is three times as large and of oppo- 
site sign as the binding energy shift. The experimental ratio found for 
Xe NO0 and Xe 4d is indeed approximately - 3 [ 151, in spite of the fact 
that the Xe NO0 process includes valence electrons. 

Combination of eqns. (2a) and (4) finally leads to 

Aci = - [AR, (i) + Ap(i)/2] (18) 

Thus, by using Ap as an experimentally derived estimate for AR we are able 
to resolve the pure initial state effect Ac. Equation (18); however, is only 
applicable in cases where the binding energies AR, refer to the vacuum 
level. This is usually not true for solid samples. For these samples the binding 
energies are normally given with respect to the Fermi level. Since the Fermi 
energy cv is different for different samples it is necessary to include the 
change in Fermi energies 

Aei = - [A.&(i) + AD(i)/21 + Acr (19) 

With the usual approximation in which - Aer is set equal to the difference 
in the corresponding work functions (A@) we find 

Aci = - [AR,(i) + Ap(i)/2] - A# (26) 

Independently measured work functions can only be used for samples 
which are sufficiently conducting. For a non-conducting sample the Fermi 
energy itself depends on experimental conditions, specifically the number of 
defects created by X-ray irradiation and the density of low energy electrons 
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which are present in the vicinity of the sample surface. For non-conducting 
materials it is therefore necessary to measure $ under the same experimental 
conditions as EB (i). In principle $I can be obtained from the low energy 
cutoff on the photoelectron distribution [ 161. 

To conclude this section we would like to connect the present analysis 
with the traditional analysis in terms of Wagner’s Auger parameter, 01, 
which is defined as 

cx(hij, X, I) = E, (kij, X) + EB (1) (21) 

Equation (21) indicates that the Auger parameter introduced by Wagner 
is defined for any arbitrary combination of an Auger transition E, (kij) 
and a binding energy E,(Z). For these arbitrary combinations eqn. (3), 
however, does not generally hold. As Thomas pointed out in ref. 9d, the 
application of eqn. (3) implies i = j and I = k or I= i. With this restriction 
we obtain from eqns. (2), (11) and (15) 

a(kii, X) = EA (kii, X) + E, (i) 

= -Ek +Ei-Rh - Ri + Rii + F(ii, X) (22) 

Auger parameters found in the literature do not always fulfil the above- 
mentioned conditions. Often, the selection of Auger transition and binding 
energy depends on what is easily obtainable experimentally. In contrast, p 
is uniquely defined: the Auger process has to be kii and the two binding 
energies are strictly connected to the initial and final state of the Auger 
transition. 

The Auger parameter shift Acw is given by 

Aa(kii) = AEA (kii) + AE, (i) 

= - AE~ + Aei - AR, - ARi + ARii (23) 

In contrast to Afl, Acx depends on several relaxation contributions, namely 
ARi, ARii and AR,, and in addition on the initial state contributions AC, 
and Aei. Only if the two inner shell ionizations exhibit the same chemical 
state dependence in the initial (Aei = Ae, ) and in the final (ARi = ARk) 
state, do Ao and Ap become equivalent. These are the approximations 
introduced in all derivations of eqn. (3) [9]. Since we can express Ao as 

Aa(kii) = AEB (k) - AEB (i) - 2ARi + ARii (24) 

it is obvious that the equivalence of Ao and Ap demands AEa (i) = AEs (k). 
As stated in the Introduction, such an equality is usually not observed. It is 
difficult to judge how much of the difference AEB (k) - AE, (i) results from 
initial and how much from final state effects. Theoretical calculations 
indicate that the chemical state dependence of ck - ei is indeed small [4]. 
The difference in relaxation contributions, however, does not seem to be 
negligible. For example, for Mg compared to Mg* one finds AR, = 2.5 eV 
and ARi, = 3.0 eV [17]. 
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AN APPLICATION 

To derive ,f3(i, X) (eqn. (12)) for a given sample we need the following 
experimental data: 

(i) the Auger kinetic energy EA (kii, X). Complete relaxation conditions 
must be fulfilled and the structure of the Auger multiplet must be unaffected 
by variations in the chemical state, 

(ii) the binding energy E, (i), and 
(iii) the binding energy E, (k). 
For solids, all three energies should be obtained from the same sample 

under the same experimental conditions to avoid any possible shift of the 
reference level. To evaluate initial state effects (eqn. (20)) it is also necessary 
to measure the work function 4, of the sample. The latter complication is 
avoided when the sample is studied in the gas phase. For a first application 
we therefore looked for gas phase data. 

A set of data which provides all necessary energies has recently been 
published by Sodhi and Cave11 [ 11. In this study P 1s and P 2p binding 
energies and P KL, 3 L, 3, ‘Dz Auger energies have been measured in the 
gas phase for eighteen phosphorus compounds. The observed energy shifts 
with respect to PH, are listed in Table 1. The numbering of the compounds 
is as in ref. 1. From the data of Sodhi and Cave11 we calculated AE, (Is, 2p) 
according to eqn. (13) and AR,, according to eqn. (4). From the measured 
binding energy shifts AE,(2p) and finally from AR, we obtained Ae,, 
(eqn. (2)). In addition to these data, we show in Table 1 the AR, values 
which are derived from the Auger parameter shift Acu (eqn. (3)) and the 
values calculated by Sodhi and Cave11 [ 11. If necessary, these AR values 
are indicated by a subscript Q! or SC. 

In Fig. 1 we have plotted AE, (KL,, 3 Lz, 3 ) vs. AE, (Is, 2~). This plot is 
similar to a chemical state plot as introduced by Wagner [9a,b]. In Fig. 1 
Ap corresponds to the vertical distance of the data points from the indicated 
45”line going through the data point of the reference compouna. For all 
compounds lying above this line A& and therefore AR, is positive, indicating 
a larger final state relaxation as in the reference compound. It is obvious 
from Fig. 1 that for most of the investigated phosphorus compounds the 
final state relaxation is larger than for PH3. This is not surprising. Only for 
PF3 and OPFs do we find slightly negative relaxation contributions. 

On average our AR values are somewhat smaller than those derived from 
A,cr (cf. Table 1). This results from the fact that AE, (ls,2p) is smaller than 
AEB (2~) which in itself is a result of the more pronounced binding energy 
shift of P 1s as compared to P 2p. The difference between these two shifts 
has already been discussed by Sodhi and Cavell [ 1] who noted that AE, (1s) 
and AEn (2~) are nearly linearly dependent. Due to this linear dependence 
our AR values indicate approximately the same trends as the AR, values. 
The remaining differences are discussed below. The deviations between our 
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Fig. 1. Plot of the Auger kinetic energy shift AE, (If&, s Lz, 3,1DZ) vs. 2AEn (i) - AE, (k). 
PHs is used as the reference compound. The different compounds are indicated by the 
numbering given in Table 1. A@ is the vertical distance from the indicated 4591ine. All 
compounds appearing above this line have a positive Afl indicating stronger relaxation 
than in the reference compound. 

values and the calculated values of Sodhi and Cave11 (ARsc ) are not very 
large (< 1.5 eV) but scattered. Since we do not know how much of this 
scattering is caused by approximations in the calculational procedure applied 
by Sodhi and Cavell (CNDO/Z) we do not want to discuss these deviations 
in more detail. 

To interpret our data (AR and Ae) we follow the ideas outlined by Aitken 
et al. [12]. First we consider the final state relaxation. An increase in AR 
tells us that the positive charge at the photoionized atom is more efficiently 
screened. Since this screening can be connected to the polarizability of the 
surroundings, changes in AR with variation of the ligands can be interpreted 
as being due to differences in the polarizability of the ligands. We have to 
bear in mind, however, that contributions from different ligands most 
likely will not be additive. 

Let us now look at some of the compounds in detail. From a comparison 
of PFs and PHs we find that F is slightly less polarizable than H. However, 
in PFs AR is nearly zero. The larger number of substituents compensates 
for the somewhat lower polarizability, a behaviour which has already been 
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proposed by Wagner [9a,b]. This is a first hint to the above-mentioned 
non-additivity. In contrast to our result, which is in accordance with the 
calculated values from ref. 12, the AR, values predict fluorine to be simi- 
larly (from PFs) or even slightly more (from PFS) polarizable when com- 
pared to hydrogen. Aitken et al. [12] also find a slightly positive AR, 
for F compared to H. 

From trivalent phosphorus compounds we obtain the following order for 
increasing polarizability 

F < H < OCH, < CHs < Cl = CFJ = C2H, 

-0.11 0.0 0.27 0.35 0.45 0.47 0.48 

The figures give AR per ligand relative to H. For F, H, CHs and Cl the 
same order was derived by Perry and Jolly [18] who pointed out that this 
order is consistent with optically determined polarizabilities. 

If AR, is used instead of AR to establish a polarizability series from 
trivalent phosphorous compounds the following order is obtained 

H “-F < OCHs = CH, < CFs = CzH5 * Cl 

0.0 0.02 0.37 0.48 0.49 0.53 

The values have the same meaning as above. The equivalence of methyl 
and methoxy is a little surprising in this series. For ligands for which the 
polarizabilities are not too different the individual contributions seem to 
be fairly additive (Table 2). This is, however, no longer true if the number 
of ligands varies, as with PFs compared to PFs, and for compounds con- 
taining multiple bonds (Table 3). The relaxation contribution of OPXs 
is increased with respect to PXs for the unpolarizable X = F but slightly 
decreased for the welI polarizable X = Cl, with X = OCHs in between as 
expected from the polarizability series. The overall influence of oxygen is 
quite small, contrary to the report by Bahl and co-workers [19] for tellu- 
rium compounds. These authors find a polarizability series with 0 = Cl but 

TABLE 2 

ADDITIVITY OF RELAXATION CONTRIBUTIONSa 

AR AR, 

Calc.a Found Calc.* Found 

PC13 - Cl + CHB 1.20 1.25 1.39 1.43 
(CH30)3PS - 0CH3 + Cl 1.42 1.46 1.83 1.87 
C13PS - 2Cl+ 0CH3 1.34 1.46 1.70 1.87 
C13PS - Cl + CH3 1.60 1.71 1.86 2.02 

%alc: calculated from the compound shown and the increments given in the text. 
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TABLE 3 

DIFFERENCES IN RELAXATION CONTRIBUTIONS FOR 
OXYGEN- AND SULPHUR-CONTAINING COMPOUNDS 

X F OCHJ Cl 

AR(oP&) - AR(PxJ) 0.19 0.12 - 0.05 
AR(sPX3) - AR(PxJ) 0.89 0.44 0.11 

this is not in accordance with the fact that oxygen should be “hard” in the 
sense of Pearson [20]. In contrast to oxygen, the influence of S is quite 
large and even more dependent on the other ligands. Since S is “soft” it 
contributes strongly to the total relaxation when X is a hard unpolarizable 
ligand like F, but it contributes only weakly when X itself is soft like Cl. 
Such strong deviations from additivity should not be restricted to com- 
pounds containing multiple bonds. They also should appear for compounds 
like PFzCl or PF2CHs. It will be interesting to find out from an increasing 
amount of experimental data available how far experimentally determined 
relaxation contributions can be used to quantify Pearson’s idea of hard and 
soft ligands [20]. 

We now turn to initial state effects Ae. From the PXs compounds we 
derive the following order 

H = Alkyl < OCHJ < CFs < Cl < F 

0.0 0.66 1.04 1.38 1.47 

The numbers give AE per ligand. 
In spite of the pronounced electronegativity difference between F and Cl, 

their initial state effect is quite similar. This has already been noted by 
Aitken et al. [12] for F and Cl and also for Br. When the polarizability 
effect is separated the three halogens become nearly equal. Their electro- 
negativity differences are therefore mainly due to their different polariz- 
abilities. In accordance with ref. 12 a similar effect is found for alkyl groups. 
The electron-releasing effect of the alkyl groups is due only to polarizability 
effects. There is nearly no initial state effect compared to H and the negative 
binding energy shift observed for P(CH3)s and P(C,H,), compared to 
PHs results solely from relaxation contributions. 

We now consider the additivity of initial state effects. In Table 4 we have 
calculated the initial state effects AC from the above-given increments and an 
increment of 1.35 for oxygen and sulphur. The initial state effect seems to 
be fairly additive even in cases where the polarizability effect is not. As F 
and Cl, and 0 and S have about the same initial state effect, the initial 
state effect seems to be similar for second and third row elements. However, 
the third row elements are more polarizable. Since the initial state effects 
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TABLE 4 

ADDITIVITY OF INITIAL STATE EFFECTSa 

-A.E 

Calca Found 

I-5 7.35 7.42 
0PF3 5.76 5.77 
SPF, 5.76 5.71 

W30)3PO 3.33 3.46 

FH30)3PS 3.33 3.63 
OPC13 5.49 5.31 
SPC13 5.49 5.31 
CH3PC12 2.76 2.78 
(CH30)2PSCI 4.05 4.24 
CH3PSClz 4.11 4.30 

aCalc: calculated from the increments given in 
the text. 

of 0 and S do not depend very much on the nature of the other ligands 
we can include these two atoms in the above-given series which was, at least 
in the case of sulphur, not possible for the polarizability series. 

H = Alkyl < OCHJ < CF3 < 0 = S = Cl < F 

0.0 0.66 1.04 1.35 1.38 1.47 

Finally, we compare our Ae values to the results of a potential model [5]. 
In the point charge approximation the orbital energy ei of an inner shell 
orbital i can be expressed as 

Ej = kAiqA + V(qB) + EP (23) 

gA is the charge at the photoionized atom, V(q, ) is the electrostatic poten- 
tial at nucleus A created by the charges qB on the other atoms. kAi is a 
parameter depending on the atom and the orbital under consideration. 
Theoretical values for kAj can be derived from Mann’s tabulation of atomic 
integrals [Zl] (this yields kPZp = 14.32 for the free phosphors atom) or 
from the approximation [ 41 

where t is the Slater exponent and n the principal quantum number of the 
valence shell of the photoionized atom. The latter yields kp = 15.35 inde- 
pendent of the inner shell being considered. 

Since we have separated initial and final state effects by using 1/2Ap(2p) 



Fig. 2. Correlation between initial state effects and the results of a point charge model. 
Ac is from Table 1, and off-atom potentials V(qB) and atomic charges qA are from 
CNDO/2 calculations of ref. 1. 

as an experimentally derived estimate for the final state relaxation, the AE 
values given in Table 1 have to be considered as solely due to initial state 
effects. We therefore have to correlate our AE values directly with initial 
state charges. The correlation obtained for the CND0/2 charges and off-atom 
potentials V(q, ) calculated by Sodhi and Cave11 [l] is shown in Fig. 2. The 
correlation is highly satisfactory (correlation coefficient 0.999). From the 
slope we obtain k,,, = 13.24, a value somewhat smaller than the above- 
mentioned theoretical value but in close agreement with that Sodhi and 
Cavell found from their analysis. 

CONCLUSIONS 

From the above-discussed reexamination of the experimental data of 
Sodhi and Cavell [l] we are able to draw the following conclusions. 

(i) The quantity A&i) = AE, (kii) + 2AEB (i) - AEB (k) is a better ap- 
proximation to final state relaxation effects than the Auger parameter 
shift, AU, since it takes into account a possible difference in the chemical 
state dependence of different inner shells. A/3(i) only depends on relaxation 
contributions connected with orbital i. 

(ii) For the phosphorus compounds studied in ref. 1 the results obtained 
from A/3 are not very different from those obtained from Aa. This is mainly 
due to the fact that relaxation contributions are relatively small for these 
compounds (AR < 2 eV). 
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(iii) The contribution of different substituents to the total relaxation 
follows the usual assumption on group polarizabilities. Substituents which 
are “hard” in Pearson’s definition [20] contribute little and those which 
are “soft” contribute much to AR. The contribution of different substituents 
are, however, not generally additive. 

(iv) Initial state effects do not follow electronegativities. F and Cl as 
well as 0 and S behave similarly, which may also be true for other second and 
third row elements. The initial state contributions of different substituents 
are fairly additive. 

As mentioned earlier, the applicability of Ap as an experimental estimate 
of final state relaxation contributions is not restricted to molecules in the gas 
phase. Applications to ternary Zintl phases [22] and technical catalysts [23] 
have just been completed. However, the analysis cannot be applied in a 
straightforward manner to systems with second row atoms, since for these 
atoms the Auger decay always involves valence electrons. This limitation 
also holds for the application of the Auger parameter shift, Ao. 
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