3S'85
Symposium on
Surface Science

CONTRIBUTIONS

Editors: G. Betz
W. Husinsky
H. Störi
P. Varga

Obertraun/Austria
Jan 27 - Feb 2, 1985
INTERPRETATION OF THE NIS-PHOTOELECTRON SPECTRA OF CHEMISORBED N₂ IN
TERMS OF LOCAL METAL-MOLECULE INTERACTIONS [1]

H.-J. Freund

Institut für Physikalische und Theoretische Chemie, Universität
Erlangen-Nürnberg, Egerlandstr. 3, 8520 Erlangen

R.P. Messmer

General Electric Corporate Research and Development, Schenectady
N.Y. 12301, USA

C.M. Kao, E.W. Plummer

Department of Physics, University of Pennsylvania, Philadelphia,
Pa. 19104, USA

There is at present some controversy concerning the interpretation of
core photoelectron spectra for weakly chemisorbed molecules, e.g.
CO/Cu and N₂/Ni. One view [2,3] claims that the shape of the surface
density of states completely determines the shape of the spectral
function while the other view [4,5] considers it an indication of the
nature of the local metal-molecule interaction. In order to address
this problem we present here results of a theoretical ab-initio
study including correlation corrections on several electronic states
of the neutral and core-ionized (NIs) linear [1,6] Ni-N₂ cluster
using the generalized valence bond method. The structure of the li-
near complex has been geometry optimized for two states, namely a ³Σ⁺
and a ¹Σ⁺ state which differ by the electronic configuration of the
Ni atom. In the ³Σ⁺ the Ni is in a 3d⁹4s⁴³⁹D in the ¹Σ⁺ in a
3d¹⁰⁹S configuration. The lower panel of Fig. 1 shows the potential
energy curves for both states. Clearly, the ground state of the
system is the ¹Σ⁺ state [6], where the N₂ molecule is coupled to the
Ni 3d¹⁰ configuration. The bond energy gained by interaction be-
tween a N₂ molecule and a Ni 4s 3d⁹ configuration ³Σ⁺ is by 0.45 eV
weaker than the bond energy of the ¹Σ⁺ state. This is mainly due to
the strong Pauli repulsion between the N₂ carbon lone pair and the
4s electron of the metal. The resulting bond is not only weaker, but
also longer than in the case of the ¹Σ⁺ state. Long bond distances,
Fig. 1: (a) Upper panel: Binding energy difference between the inequivalent nitrogen atoms N_1 and N_r as a function of metal molecule separation. (\bullet): equivalent core calculations in 3d^{10} configuration, (O): non-equivalent core calculation in 3d^{10} configuration, (△): equivalent core calculation in 4s3d^9 configuration.

(b) Lower panel: Potential energy curves for the ground state (3d^{10}) and the lowest triplet excited state (4s3d^9) of neutral NiN_2. D_e and D_e' denote the heats of adsorption of these states.
consistent with the $3\Sigma^+$ state have also been used previously in Hartree-Fock calculations. In those calculations the metal configuration was $4s^3d^9$. Therefore, the $3\Sigma^+$ state corresponds to the result of a Hartree-Fock calculation. If we now ionize the system by creating core holes starting from either of the two states we find two important results. i) The difference in Ni1s binding energy between the two inequivalent nitrogen atoms is rather small for the $3\Sigma^+$ state, namely ~0.3 -~0.4 eV, and large for $1\Sigma^+$ state, namely ~0.9 -~1.2 eV respectively (upper panel Fig.1). ii) The binding energy for the Ni1s ionization of the nitrogen closer to the Ni atom (N₁) is larger than for ionization of the more remote nitrogen atom (Nᵢ).

Result i) for the $3\Sigma^+$ state is consistent with results at the Hartree-Fock level. An estimation of ionization energies based purely on Hartree-Fock calculations would lead to an energetic sequence of binding energies reversed with respect to the present results.

In order to get the result summarized in i) and ii) we had to use the equivalent core approximation to properly account for deficiencies in the basis sets.

Within the equivalent core approximation we can properly account for π-back donation from the metal to the molecule. The distribution of valence electrons in the ion resulting from the $1\Sigma^+$ looks like Ni⁺-NO and Ni⁺-ON depending on the position of the hole on the adsorbed molecule. The driving force is the screening of the core hole by metal electrons.

It is the binding energy difference of NO bound with its oxygen or nitrogen end to a Ni ion in the geometry of the neutral ground state that determines the energy separation between the two ion states. The more stable configuration is achieved when "NO" binds with the nitrogen atom to the surface. This qualitative picture is in agreement with result ii).

Corresponding assignments have been put forward, previously [8,9].

Once we know that the proper description is given in terms of the $1\Sigma^+$ state we can try the comparison with experiment. Fig. 2 shows a comparison between a convolution of our calculated line spectrum,
Fig. 2: Comparison of experimentally observed \(N_{1s} \) spectral functions of Ni(100)/N\(_2\) with the gaussian-convoluted calculated line spectrum of NiN\(_2\) (b). The calculated relative ionization energies are marked by arrows. The full spectrum was taken in an angle integrated mode, while the partially shown spectrum was taken in an angle resolved mode \(N_{1s} \).
now including core excited states, and the spectrum of chemisorbed \(\text{N}_2 \) on Ni(100)\(^2\). In our convolution we used the line widths of the two unscreened components as parameters to fit the experimental spectrum (FWHM: 3.6 eV). The line width of the two screened components were chosen according to the experimental resolution (FWHM: 1.2 eV).\(^2\)

The physical justification to use different line widths comes from the expected dynamical behaviour (life time) of the screened and unscreened ion states. If one wanted to theoretically describe the different dynamical behaviour of the different ion states properly by an ab-initio calculation one would have to invoke the electronic structure of the extended substrate.

However, given the simplicity of the local model using a single metal atom to describe a transition metal surface we consider the agreement between calculated and measured spectral function, as shown in Fig.2, as excellent, and believe that the essential physics is contained in this approach.

References:

2. e.g. E. Umbach, Sol. State Comm. 51, 365 (1984)
3. e.g. K. Schönhammer, O. Gunnarsson, Sol. State Comm. 23, 691 (1977)