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Abstract

We present a massively parallel implementation to perform quantum dynamical wave packet calculations of molecules
on surfaces. The employed algorithm propagates the wavefunction via the time-dependent Schrödinger equation within a
finite basis representation by Split and Chebyshev schemes, respectively. For the parallelization, a problem adapted data
decomposition in all dimensions is introduced that ensures an optimal load balancing. In a speedup analysis of the timing and
scaling properties, the overall semi-linear scaling of the algorithm is verified. The almost linear speedup up to 512 processing
elements indicates our implementation as a powerful tool for high-dimensional calculations. The implementation is applied to
laser induced desorption of molecules from surfaces. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A rigorous treatment of quantum dynamical phenomena requires the solution of the time-dependent Schrödinger
equation. While low-dimensional quantum dynamics can be performed routinely on workstations, high-
dimensional calculations still remain a challenge. This is due to the exponential scaling behaviour with the number
of degrees of freedomf taken into account. For a general basis representation of the extentN , the overall problem
size amounts toNf . Then, the action of the Hamiltonian upon the wavefunction shows the scaling relationN2f

of a matrix–vector multiplication. An iterative action of the Hamiltonian, which is the most time consuming step
of many algorithms, results in an exhausting numerical effort. Therefore, accurate quantum dynamical studies are
restricted to few dimensions only.

In the last two decades progressive developments in algorithms, propagation methods and numerical
implementations have yielded much more economical approaches. Fast transform algorithms [1] in conjunction
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with coordinate representations and basis expansions tailored to the specific problem [2–4] minimize the problem
size and approach linear scaling with the problem size for the action of the Hamiltonian. Very efficient propagation
schemes reduce the number of necessary Hamiltonian actions [5] in time-dependent approaches. However, in
spite of the recent methodical progress, contemporary applications are only able to tackle three-dimensional exact
quantum dynamics [6–8]. For hydrogen studies, the small spectral range of the Hamiltonian due to lightweight
system requires only a small-sized basis expansion that allows a six-dimensional investigation [9,10]. By limiting
the configuration space, approximative approaches are able to treat more degrees of freedom [11–14]. Because of
the limitations, these methods have to refer to exact quantum dynamical studies as a benchmark.

Computing power and memory requirements of such high-dimensional studies exceed the capabilities of single
workstations by far. Consequently, a great need for efficient parallel implementations has raised over the past
years. Characterized by highly scalable algorithms and a large range of problem size, quantum dynamical studies
are well suited for exploitation of parallel computing power. However, recent efforts [15–18] are mainly focused on
diagonalization of the Hamiltonian within a time-independent approach. The employed problem decompositions
in one or few dimensions are not very flexible resulting in restrictions for the problem shape and finally for the
problem size.

The present paper introduces a parallel algorithm for the quantum dynamical wave packet propagation of
molecules on surfaces. The paper is organized as follows: In Section 2, we introduce our physical model.
The basis representation, the computation of the resulting Hamiltonian matrix elements and the employed
propagation schemes are described. Section 3 presents the parallel implementation. The proposed strategy of data
decomposition and communication is discussed in a speedup analysis. Section 4 shows the first results from the
application of our implementation to a photodesorption process. Finally, we conclude in Section 5.

2. Physical model

2.1. Representation

The nuclear quantum dynamics of a rigid diatomic molecule on a corrugated static surface includes five degrees
of freedom as shown in Fig. 1. In this coordinate representation the corresponding Hamiltonian may be written as

Ĥ = T̂ + V̂ = K̂ 2

2M
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2µr2
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+ V̂ (R, θ,φ) (1)

Fig. 1. Coordinate representation of a rigid diatomic molecule adsorbed on a static surface.
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with the positionR = (x, y, z) and the momentum operatorK̂ = (k̂x, k̂y, k̂z) of the center of mass, the total massM,
the angular momentum operatorĴ, the reduced massµ and the intramolecular equilibrium distancer0. The kinetic
energy operator

T̂ = K̂ 2
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is composed of the contributions from the translation of the center of massM and the rotation of the reduced
massµ. The potential energy surfacêV (R, θ,φ) is obtained from quantum chemical calculations solving the
electronic Schrödinger equation within the Born–Oppenheimer approximation.

According to the structure of the Hamiltonian, we expand the wavefunction

Ψ (R, θ,φ, t) =
∑
ijm

Ψijm(t)Φi(R)Yjm(θ,φ) (3)

in terms of orthogonal eigenfunctions of the kinetic energy operatorT̂ with the expansion coefficientsΨijm.
This finite basis representation (FBR) [19,20] consists of an expansion in plane waves{Φi} for the Cartesian
coordinates and spherical harmonics{Yjm} for the angular coordinates, respectively. The plane wave basis includes

Nxyz =NxNyNz basis functions with the momentaKi = (k
ix
x , k

iy
y , k

iz
z ) that form an equidistant grid in the Cartesian

momentum space. The rotational basis is limited toNrot = (jmax+ 1)2 basis functions with the angular momentum
0 � j � jmax and its projection−jmax� m� jmax.

2.2. Matrix elements of the Hamiltonian

The basic operation of any propagation scheme is the action of the Hamiltonian upon the wavefunction [5].
Within a general basis expansion, the Hamiltonian and the wavefunction take the shape of a matrix and a vector,
respectively. Accordingly, the Hamiltonian action is a matrix–vector multiplication that scales quadratically with
the problem size. This unfavorable scaling behaviour is significantly improved by the special structure of the
Hamiltonian matrix elements within the FBR as described in the following paragraphs.

To compute matrix elements of the Hamiltonian, we employ a quadrature scheme on a grid representation that
follows the discrete variable representation (DVR) [2]. The Cartesian coordinatesR and the azimuthal angle
φ are sampled on evenly spaced grids ofNxyz andNφ = 2jmax + 1 grid points, respectively. The polar angle
θ is represented byNθ = jmax + 1 grid points defined by the zeros of the Legendre polynomialPjmax+1(θ).
Corresponding to the grid representation, the matrix elements of the Hamiltonian are integrated overR andφ

by the trapezoidal rule whereas the integration overθ is performed by a Gauss–Legendre quadrature with the
weight functionw [21]. Within this quadrature scheme, the orthogonality of the FBR basis functions∑

αβγ

wβΦ
∗
i (Rα)Y

∗
jm(θβ,φγ )Φi′(Rα)Yj ′m′(θβ,φγ )= δii′δjj ′δmm′ (4)

is preserved. Thus, the kinetic energy operator has a diagonal matrix representation and its action is performed by
a vector–vector multiplication of the wavefunction by the eigenvalue spectrum [20]. This operation features the
linear scaling relationNxyzNrot. As the matrix elements of the potential energy operator

Vijm,i′j ′m′ =
∑
αβγ

wβΦ
∗
i (Rα)Y

∗
jm(θβ,φγ )V (Rα, θβ,φγ )Φi′(Rα)Yj ′m′(θβ,φγ ) (5)

are off-diagonal, their straight computation is avoided. Instead, the wavefunction is transformed to the DVR by
Fourier transforms inK, a Gauss–Legendre transform inj and a Fourier transform inm. Within the DVR, the
action of the potential energy operator upon the wavefunction is performed as a vector–vector multiplication with
the linear scaling relationNxyzNθNφ . Then, the wavefunction is restored to the FBR by the corresponding inverse



S. Borowski et al. / Computer Physics Communications 143 (2002) 162–173 165

transformations [20]. By using a Fast Fourier Transform (FFT) algorithm, the Fourier transforms have the semi-
linear scaling relationNxyz log(Nxyz)Nrot in K andNxyzNθNφ logNφ in m, respectively. The Gauss–Legendre
transform shows the quadratic scaling relationNxyzNrotNθ of a matrix–vector multiplication inj . In practical
applications, the semi-linear scaling inK andm dominates the quadratic scaling inj due to the relatively small
extent of the rotational basis (shown in Section 3). Finally, the action of the Hamiltonian upon the wavefunction
shows an overall semi-linear scaling within the FBR.

However, this DVR quadrature introduces an inhomogeneous data processing: since the fixed grid in the
azimuthal angleφ has to resolve the largest projection of the angular momentum, the DVR consists of
approximately twice as many grid pointsNθNφ = (jmax + 1)(2jmax+ 1) ≈ 2(jmax+ 1)2 as FBR basis functions
Nrot = (jmax+ 1)2 [2]. The difficulties concerning this issue are addressed in Section 3.

2.3. Dynamics

The time evolution of a quantum mechanical system is described by the time-dependent Schrödinger equation

i
∂

∂t
Ψ (t)= ĤΨ (t), (6)

which can formally be solved

Ψ (t + dt)= Û(dt)Ψ (t) with Û(t ′)= exp(−iĤ t ′) (7)

by introducing the time evolution operator̂U(t). For time-dependent systems, the time evolution operator is
restricted to short time steps in order to sample the time dependence of the Hamiltonian. The time-independent
Hamiltonian in Eq. (1) enables both short-time and global propagation methods because of its trivial time
dependence. Thus, we implemented the Split propagator [22]

Ûsplit(#t) ≈ exp

(
− i

2
T̂ #t

)
exp(−iV̂ #t)exp

(
− i

2
T̂ #t

)
(8)

for a very efficient short-time propagation providing second-order accuracy and the additional option of time-
dependent external fields. Furthermore, we realized an implementation of the Chebyshev propagator [23] for a
global and accurate propagation by expanding the evolution operator in terms of Chebyshev polynomials

Ûcheb(t) ≈
∑
n

an(t)Tn(Ĥnorm) (9)

with the renormalized Hamiltonian̂Hnorm of the spectral range[−1,1]. The resulting expansion coefficients
an(t) are given by Bessel functions of the first kind. The Chebyshev expansion is characterized by exponential
convergence and linear scaling in the time domain.

Because of its small computational effort and memory requirement, the fast Split propagator is employed for
high-dimensional calculations. Scrutinizing the obtained results, the Split scheme is carefully compared to the
numerically exact Chebyshev scheme for certain quantum trajectories.

3. Parallelization

The high-dimensional quantum dynamics presented in Section 2 requires an enormous amount of CPU time and
memory. According to these demands, even parallelization techniques on shared memory vector systems (OpenMP,
multitasking libraries) do not provide the needed computing power. Only message passing concepts (MPI, PVM,
SHMEM) utilizing massively parallel distributed memory architectures prove to be sufficient. Hence, we realized
a massively parallel FORTRAN 90 implementation with the SHMEM library, which is superior to comparable
message passing libraries in efficiency, especially latency, and ease of usage [24]. Test calculations were made on
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the SGI Origin 3400 at the Fritz-Haber-Institut Berlin. Full calculations were performed on the Cray T3E at the
Rechenzentrum Garching.

In the following consideration of our parallelization strategy, we freeze one lateral coordinatey since an accurate
investigation of the remaining 4D problem is even limited by the resources of currently available supercomputers.
Moreover, the computation of ab initio potential energy surfaces for four-dimensional systems is a challenging
problem itself. However, the generalization of the concept to more than four dimensions is straightforward.

3.1. Parallelization strategy

The analysis of our physical model with respect to inherent parallelism reveals that only the transformations
of the DVR quadrature arrange the data coupling and therefore involve global data. Consequently, the straight
parallel realization is a data decomposition resulting in communication collecting and distributing the global data
before and after the transformations. Furthermore, reduction communication [24] is required for the computation
of observables. According to the symmetry between data distribution and data processing within this scope, a well
balanced data decomposition leads to optimal load balancing and minimal communication overhead among the
different processing elements (PEs).

1To obtain a general implementation for large scale applications, we choose a data distribution amongNPE =
NPE
x ×NPE

z ×NPE
θ ×NPE

φ PEs in all degrees of freedom as shown in Fig. 2. Since the Cartesian coordinates have the
same data structure within FBR and DVR, a simple block distribution already provides an optimal load balancing
(see left panel of Fig. 2). For the distribution amongNPE{x,z} PEs, the global dimension of the extentN{x,z} is evenly

divided into local dimensions of the extentNL{x,z} =N{x,z}/NPE{x,z}. The relation between the global indexi{x,z} and

the local indexiL{x,z} on PEnPE{x,z} 2 is given by

iL{x,z} = (
i{x,z} − 1

)
modNL{x,z} + 1, (10)

nPE{x,z} = i{x,z} − 1

NL{x,z}
,

i{x,z} = iL{x,z} + nPE{x,z} ·NL{x,z}.

Fig. 2. Equivalence of load and data distribution: 2× 2 PE grid for the Cartesian coordinates{x, z} (left panel) and the angular coordinates
{θ,φ} (right panel), respectively. Data structures located on a certain PE are labeled by colored areas. The FBR data{kx, kz, j,m} is limited to
the central{j,m} triangle only whereas the DVR data{αx,αz,β, γ } includes the whole{β,γ } rectangle. The color scheme indicates a perfect
load balancing for all dimensions, i.e., all PEs process the same amount of data in both the FBR and the DVR.

1 In the following paragraphs, the basic arithmetics concerning the data decomposition has to be understood as integer operations.
2 Global indices denote the element position with respect to the global dimension whereas local indices denote the element position with

respect to the local dimension on a certain PE.
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For the angular coordinates, a more sophisticated data decomposition is necessary. The data shape of the rotational
basis within the FBR is the central{j,m} triangle in the right panel of Fig. 2, which is characterized by the
multiplicity of the j states with respect to their projectionm. However, the data object of the angular grid within
the DVR is the whole{β,γ } rectangle due to the fixed high resolution grid in the azimuthal angleφ. Hence, we
developed a data distribution that ensures optimal load balancing in both the FBR and the DVR data (see right
panel of Fig. 2). For the polar angleθ , the global dimension of the extentNθ is evenly distributed amongNPE

θ PEs
into local dimensions of the extentNL

θ =Nθ/N
PE
θ . The lower and upper half of the global dimension is pairwisely

placed in ascending and descending order into the local dimensions, respectively. For simplicity, we arrange the
resulting element pairs into consecutive odd and even local positions. Then, the mapping between the global index
j and the local indexjL on PEnPE

θ

j � Nθ/2: jL = 2 · (j − 1)mod
(
NL
θ /2

) + 1, (11)

nPE
θ = j − 1

NL
θ /2

,

j > Nθ/2: jL = 2 · (Nθ − j)mod
(
NL
θ /2

) + 2,

nPE
θ = Nθ − j

NL
θ /2

,

jL odd: j = jL/2+ nPE
θ · (NL

θ /2
) + 1,

jL even: j =Nθ − (
jL/2+ nPE

θ · (NL
θ /2

)) + 1

requiresNL
θ to be even. Similarly, for the azimuthal angleφ the global dimension of the extentNφ is evenly

divided amongNPE
φ PEs into local dimensions of the extentNL

φ =Nφ/N
PE
φ . The lower and upper half of the global

dimension is pairwisely placed in ascending order into the local dimensions. Again, the element pairs are simply
arranged into consecutive odd and even local positions. The resulting transformation between the global indexm

and the local indexmL on PEnPE
φ

m� Nφ/2: mL = 2 · (m− 1)mod
(
NL
φ /2

) + 1, (12)

nPE
φ = m− 1

NL
φ /2

,

m >Nφ/2: mL = 2 · (m−Nφ/2− 1)mod
(
NL
φ /2

) + 2,

nPE
φ = m−Nφ/2− 1

NL
φ /2

,

mL odd: m=mL/2+ nPE
φ · (NL

φ /2
) + 1,

mL even: m=Nφ/2+mL/2+ nPE
φ · (NL

φ /2
)

raises also the restriction thatNL
φ has to be even. Therefore, we introduced one additional DVR grid point, which is

ignored as an FBR basis function, resulting inNφ = 2jmax+ 2 grid points. With the presented data decomposition,
we ultimately achieve a perfectly balanced data distribution in all data structures as shown by the color scheme in
Fig. 2. Consequently, a perfect load balancing is realized with only few communications by a data processing that
is closely related to the data distribution.

The main communication on the data structures amounts to the preparation and redistribution of the global data
before and after the transformations of the DVR quadrature. To transform a certain coordinate, the global dimension
is collected on all involved PEs while the lost parallelism is recovered by a work decomposition in another
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coordinate (gathering). Then, the transformation of the global dimension is performed on the work decomposed
structure. By redistributing the transformed global dimension among the involved PEs, the work decomposition
is finished (scattering). The consecutive transformation of all coordinates according to this procedure leads to an
extremely efficient wavefunction processing:

• gather global data inx (work decomposition inφ)
perform FFTkx → x

scatter transformed data inx
• gather global data inz (work decomposition inφ)

perform FFTkz → z

scatter transformed data inz
• gather global data inθ (work decomposition inφ)

perform Gauss–Legendre transformj → θ

scatter transformed data inθ
• gather global data inφ (work decomposition inθ )

perform FFTm→ φ

scatter transformed data inφ
• action of potential energy operator upon transformed wavefunction
• gather global data inφ (work decomposition inθ )

perform FFTφ →m

scatter transformed data inφ
• gather global data inθ (work decomposition inφ)

perform Gauss–Legendre transformθ → j

scatter transformed data inθ
• gather global data inz (work decomposition inφ)

perform FFTz → kz

scatter transformed data inz
• gather global data inx (work decomposition inφ)

perform FFTx → kx

scatter transformed data inx.
This transformation sequence narrows the temporarily global data to only one dimension. For further reduction

of communication overhead, only contiguous memory segments are communicated to avoid the communication of
strided data. In the transformation loops the PE integer arithmetics in Eqs. (10)–(12) is implemented as fast inlined
module functions.

In contrast to conventional parallelization schemes we propose a data decomposition in all degrees of freedom
in order to aim at large scale applications. Contemporary parallelization strategies in quantum dynamical studies
represented, for instance, by the work of Goldfield et al. [25] favor a data decomposition in one or few dimensions
only. Such procedure works quite well for medium-sized problems (N = 3.2× 107) as investigated in Goldfield’s
study but it fails clearly for great challenge applications (N > 109) with large dimension extents in all degrees
of freedom: for a data distribution in one or few coordinates, an increasing problem size in the non-distributed
dimensions leads to extremely small extents in the distributed dimensions. Consequently, these dimensions should
be assigned to the last indices of the wavefunction FORTRAN array to reduce local strided data access. However,
this implies an oversized effort for global data access since the large strides of the last indices have to be reordered
before communicating the data [25]. Therefore, a problem decomposition in all dimensions is compulsory for large
scale applications. Following this necessity, our data distribution provides optimal local data access and minimizes
the reorder effort for global data access.
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3.2. Parallel performance

The performance outcome of our quantum dynamics code is demonstrated by a speedup analysis that describes
the dependence of the run timetrun(N,P ) on both the system sizeN and the number of PEsP . All timing
calculations are performed by using the Split propagator. Since the transformations of the DVR quadrature are
the essential communication involving part of the Split propagator as well as of the Chebyshev propagator, the
performance results are representative of both propagation schemes.

First of all, we fix the 4D systemz× x × φ × θ 3 to the medium size 128× 128× 64× 32 in order to study the
behaviour as the number of PEs varies. The resulting fixed size speeduptrun(N,1)/trun(N,P ) [26] shown in Fig. 3
is almost linear, which indicates a very high computation to communication ratio. An efficiency of 89% for 512
PEs reveals the feasibility of great challenge applications on even more sizable supercomputers.

In addition, we investigate the scaling properties in certain dimensions. By successively doubling the extent
and the number of PEs in the dimension of interest, the overall size per PE is fixed to 64× 64× 32× 16. The
corresponding scaled speedupP trun(N,1)/trun(PN,P ) [26] assuming a linear scaling is shown in Fig. 4. For the
Cartesian coordinates involving FFTs, the performance is very close to the linear speedup. An almost perfect
behaviour is observed for the distance coordinatez because of its contiguous data structure in the first array
dimension. The slighter slope for the lateral coordinatex is due to the reordering overhead of the strided data
in the second array dimension.

For the closely connected angular coordinates, the initial performance is governed by the semi-linear scaling
of the FFT in the azimuthal angleφ. With increasing extent of the angular dimensions, the quadratic scaling of
the Gauss–Legendre transform in the polar angleθ starts to compete. The resulting speedup slowly drops behind
the supposed linear behaviour more and more following the quadratic scaling of the Gauss–Legendre transform.
However, the asymptotic quadratic scaling is irrelevant in practical applications since the computational effort of
the Gauss–Legendre transform inθ only equals that of the FFT inφ. Hence, the quadratic scaling does not even
dominate the semi-linear scaling within the transformation of the angular coordinates. This proves the semi-linear
total scaling of the Hamiltonian anticipated in Section 2. In conjunction with the outstanding communication
efficiency (see Fig. 3), the semi-linear scaling relation lays the foundations for large scale applications by a
profitable use of more than 512 PEs.

Fig. 3. Fixed size speedup for a 4D systemz× x × φ × θ of the size 128× 128× 64× 32 (solid line) compared to the linear speedup (dashed
line).

3 The order of the FORTRAN array dimensions is due to the following guideline: rapidly transforming dimensions of large extent first to
guarantee optimal data access.
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Fig. 4. Scaled speedup for a 4D systemz×x×φ× θ of the size 64×64×32×16 per PE in the different dimensions (solid line). The left graph
shows the performance for the Cartesian coordinatesz (squares) andx (triangles). The behaviour for the angular coordinates{θ,φ} (diamonds)
is illustrated in the right graph. For comparison the linear speedup (dashed line) is given.

In a full 4D calculation on 128 PEs of the Cray T3E, our implementation reaches an average floating point
performance of about 100 MFlops per PE. The calculation of a 1.5 ps quantum trajectory takes about 10 hours
propagating a 5 GByte wavefunction of the sizeN = 3.4 × 108. Most of the run time, about 90%, is spent on
the propagation scheme, 80% on the transformations of the DVR quadrature alone. The remaining time is spent
initializing data, computing observables and writing data.

To our knowledge, the only quantum dynamical calculation mastering a similarly sized problem as we do is a
six dimensional study of the adsorption dynamics of H2/Cu(111) by Dai and Light [9]. However, the adsorption
dynamics of the lightweight H2 molecule can be resolved by much smaller extents in the particular dimensions than
we use. Accordingly, the non-linear scaling part of the algorithm is decreased in comparison to our calculations.
Only the resulting reduction of the computational effort in combination with the short propagation times of about
300 fs makes this six-dimensional investigation feasible. We believe that great challenge applications characterized
by large problem sizes and complex dynamics can only be approached by consequently utilizing massively parallel
computing power with very efficient parallelization strategies like ours.

4. Application: laser induced desorption of CO from Cr2O3(0001)

As a large scale application, we simulate the laser induced desorption of CO molecules from a Cr2O3(0001)
surface that we successfully investigated in 3D studies [27]. In such a process, the laser irradiation generates an
electronically excited intermediate. During the short lifetime of the intermediate, the adsorbate changes its nuclear
geometry with respect to the substrate collecting kinetic energy in the nuclear degrees of freedom. After relaxation
to the electronic ground state, the gained nuclear kinetic energy initiates the desorption of the adsorbate.

This DIET (desorption induced by electronic transitions) [28] process is treated within a two state model
using 4D potential energy surfaces (PES) that were obtained from embedded cluster ab initio calculations on
configuration interaction (CI) level [29,30]. For the lateral dynamics, the coordinatex is assigned to the short
Cr–Cr axis on the Cr terminated surface. The laser induced transition is modeled as a Franck–Condon excitation
of the rovibrational groundstate to the electronically excited state that turns out to be an internal CO(5σ → 2π∗)
excitation of the adsorbed CO molecule [30]. After a time evolution in the excited state for a characteristic lifetime
of τ = 36 fs, the wave packet is transferred to the electronic ground state. The subsequent propagation in the ground
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state is proceeded up to convergence of the desorbing wave packet part that is consecutively separated by a grid
change method [31].

Of course, this simplified model gives only a qualitative insight into the photodesorption process. A more
accurate description of the electronic transition is provided by a stochastic wave packet method including lifetime
averaging [32]: assuming an exponential decay of the excitation, the observables are averaged with respect to
the spectral resonance lifetime of the electronically excited state. The procedure rapidly converges the expensive
exact density matrix description [33] but only necessitates the calculation of an ensemble of quantum trajectories
with varied residence lifetimes. Thus, a still enormous computational effort allows a correct description of the
photodesorption process even for high-dimensional systems, which is intractable by density matrix methods relying
on the solution of the Liouville–von Neumann equations. The results from this more sophisticated stochastic wave
packet approach will be presented elsewhere [34].

In the analysis of the finally desorbed part of the wave packet, the kinetic properties are investigated. For
the desorption coordinatez and the lateral coordinatex, the velocity distributions are shown in Fig. 5. The
occurring desorption velocities up to 2000 m/s and the bimodality of their distribution as well as lateral velocities
around 500 m/s are in qualitative agreement to experimental results [35]. To characterize the stereodynamics, the
quadrupole moment [36]

A2
0(J )= 〈J |3M̂ 2 − Ĵ 2|J 〉

Ĵ 2
(13)

depending on the rotational excitationJ with the angular momentum̂J and its projectionM̂ is shown in Fig. 6.
This quantity indicates the rotational alignment of the desorbing molecules. It ranges from−1 for pure cartwheel
rotation (J ⊥ z) to +2 for pure helicopter rotation (J ‖ z). The experimental observation of helicopter motion for
medium rotational states and cartwheel motion for strong rotational excitation is qualitatively reproduced by the
calculated results. However, deviating from the experimental observation the shape of the computed curve shows
two pronounced peaks of helicopter motion instead of only a broad one before falling off to cartwheel motion at
much higher rotational states.

An exhaustive analysis of the differences to the experimental data requires both further experimental and
theoretical investigations. For a detailed discussion and the results from the stochastic wave packet method [32],
we refer to the above mentioned studies [34].

Fig. 5. Velocity distribution for the desorption of CO from Cr2O3(0001) in z- andx-direction.
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Fig. 6. Quadrupole moment for the desorption of CO from Cr2O3(0001) as a function of rotational excitation: comparison of computed results
(left graph) and experimental data [35] (right graph).

5. Conclusions

In the present work, we introduce a massively parallel implementation of a quantum dynamical wave packet
method for molecules on surfaces. A highly scalable algorithm based on a finite basis representation [19] is
optimally realized on massively parallel systems by a homogeneous data decomposition in all dimensions. The
very high parallel efficiency up to 512 processing elements shows the feasibility of high-dimensional studies of
a sizeN > 109. Consequently, our implementation paves the way to successfully simulate complex experimental
results on quantum dynamical level, which until now was impossible due to the limited number of degrees of
freedom taken into account. First results of 4D calculations investigating a laser induced desorption process are
presented.
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