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Abstract

The study of metal deposits on oxides represents a field of wide interest with respect to applications as well as to basic

science. The state of the art of the field is reviewed on the basis of examples from various research groups. An attempt is

made to define and discuss a series of new experiments that could be undertaken to answer some key questions in the

field. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Why in the world would anyone be interested in
a rather specific subject like this? There are many
reasons why you should be interested and those
range from the industrial importance of catalysis
to the beauty of the pre-Roman art of making
stained glasses:

(1) Think about your car and the pollution
control in the exhaust system. Fig. 1 shows a
schematic diagram with a typical exhaust catalyst
in its housing [1]. The catalyst consists of a mono-
lithic backbone covered internally with a washcoat
made of mainly alumina but also ceria and zirco-
nia, which itself is mesoporous and holds the small
metal particles, often platinum or rhodium. An
electron microscope allows us to take a close look

at the morphology of the catalyst at the nanometer
scale. In order to be active, the metal particles have
to be of a few nanometer in diameter and also the
support has to be treated in the right way. To a
certain extent the preparation is an art, some call it
even ‘‘black magic’’. A full understanding of the
microscopic processes occurring at the surface of
the particles or at the interface between particle and
support, however, is unfortunately lacking. We
have to realize that catalysis in connection with
pollution control––the specific example chosen
here––does only utilize a small fraction of the world
market for solid catalysts. Human welfare is con-
siderably depending on automotive, petroleum and
other industries which constitute a market of $100
billion per year and growing rapidly. Given the
situation, it is clear that we eventually must achieve
a good understanding of the processes. Interest-
ingly, even though the problem is strongly con-
nected to applications, there is a lot of fundamental
insight that has to be gained.
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(2) Think about the problem how one could
create an artificial nose! Sensors [2–4] allow a
computer to smell via ‘‘communication with a
chemical reaction’’. An example is shown in Fig. 2.
A schematic representation of a device which is
called a metal-oxide-semiconductor-field-effect-
transistor (MOSFET) is shown (Fig. 2a). In such a
device a thin metal film is separated from a Si-
crystal through an isolating layer of SiO2. The idea
is to modulate the conductance of a small semi-
conductor slice by means of an electric field per-

pendicular to the semiconductor surface. A positive
charge on the metal layer induces a negative charge
in the semiconductor resulting in a change in the
lateral conduction. The charging of the metal layer
critically depends on its morphology and can be
influenced in a characteristic way by adsorbing
gases onto it. These changes upon adsorption allow
the MOSFET to ‘‘smell’’, but the details of the
elementary steps are not fully understood. The ac-
tual device, which was developed about half a
century after the initial idea, looks more like the one

Fig. 1. Schematic representation of the car exhaust catalyst in its housing. Transmission electron micrographs with increasing reso-

lution show the various constituing ceramic and metallic materials in their morphology. Adapted from Ref. [1].
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schematically shown in Fig. 2b. A n/p/n-transistor
is generated via local doping of the semiconductor.
It is possible to shape the oxide film and the metal
layer as indicated, thus forming a source-gate-
drain-structure. It is now easy to envision that the
performance, durability and chemical sensitivity of
such a device depends heavily on the microscopic
structure of the metal layer (see Fig. 2c). The con-
trol of the structure of the metal overlayer film
inturn depends on our understanding of the ele-
mentary steps in nucleation and growth of metal

islands and their coalescence to form the film.
Cluster formation is an intermediate step in this
process, in fact a rather important one. In the series
of elementary steps governing the shape size and
distribution of islands cluster formation is crucial.
The changes in conductance, i.e. the ability and
sensitivity to ‘‘smell’’, via the interaction with a gas
phase, depends largely on the shape and size of
islands, exposure of facets, and other more complex
factors, such as co-adsorbates, contaminants etc. of
the film. These properties need to be investigated.

Fig. 2. (a) Schematic representation of the principle of a metal oxide field effect transistor (MOSFET). (b, c) Schematic representation

of the design of a MOSFET, and representation of the morphology and the adsorption processes at the metal–oxide interface (2c

adapted from Ref. [2]).
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(3) Think of the way magnetic materials are
used to store information [5]! In Fig. 3 the situa-
tion is illustrated for a hard disc in your personal
computer, be it used for science, business or en-
tertainment. On the right the magnetic particles in
one sector of the hard disc have been imaged.
These particles are 650 nm long and 50 nm wide
for a storage density of about 20 Gbit per inch2.
Their size can go down to 150 � 15 nm2. A current
goal is to make them even smaller. Magnetic re-
cording industries make use of the fact that the
ferromagnetic state of a material with a given
orientation of the magnetic moment has a per-
manent magnetization if the material exists as
nanometer-sized particles. Although this knowl-
edge has been around since 40–50 years, despite
intense activities, the difficulty in making small
enough particles of good quality has slowed down
the advancement of this applied field. Only re-
cently, this difficulty in making small particles has
been overcome and new experimental techniques
have been developed. Conceptually, the ferro-
magnetic state of bulk metals is a surprisingly
rarely observed property if we consider that most
atoms have non-zero magnetic moments or spin.
Apparently, the formation of metallic bonds leads
to non-magnetic bulk metal. It appears quite nat-
ural to ask how the spin systems of clusters evolve
as a function of particle size. Do we understand
this in detail? The answer is probably No! There-
fore we need deeper insight into the magnetic be-
havior of nanoparticles, which is potentially
important for the development of new funda-

mental theories of magnetism and in modeling new
magnetic materials for permanent magnets or high
density recording as to above. Questions such as i)
How small can we make a ferromagnet? ii) Can
clusters of non-ferromagnetic materials be ferro-
magnetic? If yes, how many atoms do we need? iii)
In which way does the interaction of a cluster with
a substrate alter the magnetic properties? Can now
be explored.

(4) Think of the Romans! Do you know how
they made the beautiful stained glasses or how the
glass for colossal, colorful windows in medieval
cathedrals have been manufactured? It is based
on cluster technology, i.e., the use of clusters in-
teracting with oxidic substrates! Fig. 4 shows
details of a window from the Altenberg Cathedral
near Cologne. The red color is caused by gold
particles embedded in the glass matrix and the
matrix is an amorphous silica–alumina mixture.
Since the work of the physicist A. Mie, published
in ‘‘Annalen der Physik’’ in 1908 [6], it is under-
stood that absorption of light in a collective ex-
citation of electrons on a sphere of metal––we
now call it a plasmon excitation––is the cause of
the color. When the particles become smaller and
smaller in size the electrons start to ‘‘realize’’ that
they are confined in space and then the optical
properties become size dependent in a way that
has not been predicted by classical Mie-theory
but is a consequence of quantum mechanics: If
you put an electron in a ‘‘box’’, i.e. a potential
well and the dimensions of the ‘‘box’’ reach
atomic dimensions, e.g. 10 �AA or so, then the states

Fig. 3. Picture of a hard disk in a personal computer. At the right the sectors of a hard disc are schematically represented and in

addition a small area consisting of magnetic nanoparticles is imaged on the far right.
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of these electrons in the box are not continuous
but quantized. The energetic separation between
the quantized levels are now depending on the
size and therefore the energies for electron exci-
tation will depend upon size, and, as it turns out,
also on shape. This opens possibilities for ma-
nipulation of optical properties. If one, for ex-
ample, asymmetrically stretches a solidifying glass
the particles assume a certain shape which not
only influences the optical absorption energy but
also its polarization. Optical polarization filters
[7] can be produced. While these filters depend on
the linear optical properties of the material, also
the non-linear optical responses are changed if
high light intensities, e.g. from laser sources, are
used. Keep in mind that the ‘‘matrix’’ surround-
ing the particle, in our case the glass, has an in-
fluence on the optical properties of the small
particles so that there are many parameters that
can be manipulated in order to design new ma-
terials with unexpected optical properties.

The chosen examples all have a connection to
everyday life, including information transfer and
storage, environmental pollution control, arts and
even entertainment. It should be obvious therefore
that though the topic is specific it has wide impli-
cations, and:

You must be interested!
In the following we discuss a variety of case

studies and then in the final chapter speculate
about things to do and where the field is going.

2. Where do we stand?

This question is answered in two steps. The first
concerns the insulating substrate. How well do we
understand its structure and properties? This is of
importance to understand any modification to the
substrate by deposition of additional material. In
the second step, we deal with similar questions for
the metal deposits, sometimes also called aggre-
gates or clusters.

2.1. The oxide support

Let us start with a look at the oxide supports
and answer the question: How do you make oxide
surfaces? The preparation of a clean oxide surface
is a rather difficult task. Several strategies have
been followed [8–10].

The most straightforward strategy is in situ
cleavage under ultrahigh-vacuum conditions. This,
however, only leads to good results in certain

Fig. 4. Detail of a window in the Altenberg Cathedral (near Cologne). The red colored stained glass consists of small gold colloid

particles residing in a glass matrix.
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cases, such as MgO, NiO, ZnO, SrTiO3, [11]. Some
interesting materials such as Al2O3, SiO2, TiO2,
etc. are hard to cleave, i.e., they tend to form
rough surfaces upon cleave [10]. A general disad-
vantage of cleaved bulk single crystal insulators
with respect to experimental investigations is their
low thermal and electrical conductivity. An alter-
native way of bulk single crystal surface prepara-
tion is ex situ cutting and polishing followed by an
in situ treatment by sputtering and subsequent
annealing in oxygen. Through such a process a
sufficient number of defects is created in the near
surface region and in the bulk to support con-
ductivity of the material. This leads to a situation
where electron spectroscopies as well as scanning
tunneling microscopy (STM) can be applied to
elucidate the electronic and geometric structure of
the system [10].

Single crystalline oxide surfaces also may be
prepared via the growth of thin oxide films on
single crystal metal supports [8,9,12]. To such sys-
tems all surface science tools can be applied
directly. If the oxide film is supposed to represent
the bulk situation special care has to be taken in the
control of film thickness because the film should
represent the situation in the bulk. Also, if ad-
sorption and reactivity studies are intended the
continuity of the film has to be guaranteed. There
are several examples in the literature where this has
been achieved [12–14]. Probably, the best-studied
clean oxide surfaces are TiO2(100) and TiO2(110)
[8,10,15]. A STM image of the clean ð1 � 1Þ

TiO2(110) surface taken by Diebold et al. [16] is
shown in Fig. 5. One of the first atomically resolved
images of this surface was reported by Thornton
and co-workers [17,18]. The inset shows a ball and
stick model of the surface. There is now accumu-
lating evidence from theoretical modeling of the
tunneling conditions, but also from adsorbate
studies using molecules which are assumed to bind
to the exposed Ti sites, that the bright rows rep-
resent Ti atoms. Iwasawa and co-workers [19–22]
have successfully used formic acid in such a study
and showed in line with the theoretical predictions,
and counter intuitive with respect to topological
arguments, that the Ti-ions are imaged as bright
lines and the oxygen rows as dark lines. Taking the
resolvable interatomic distances within the surface
layer the values correspond to the structure of the
stoichiometric (110) surface [23,24]. Interatomic
distances normal to the surface, however, are sub-
stantially different from the bulk values as revealed
by X-ray scattering experiments [23]. The top layer
sixfold coordinated Ti atoms move outward and
the fivefold-coordinated Ti atoms inward. This
leads to a rumpling of 0:3 � 0:1 �AA. The rumpling
repeats itself in the second layer down with an
amplitude of about half of that in the top layer.
Bond length variations range from 11.9% con-
traction to 9.3% expansion. These strong relax-
ations are not atypical for oxide surfaces and had
been theoretically predicted [25–27].

Recently, the RuO2(110) surface, which is iso-
structural with the TiO2(110) surface, has been

Fig. 5. Structure of TiO2(110) ð1 � 1Þ surface as determined via STM (a, reproduced from Ref. [16]) and via grazing incidence X-ray

scattering (b, adapted from Ref. [23]).
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characterized via STM and low energy electron
diffraction (LEED) as a means to determine
structures [28,29]. It appears that in this case the
contrast in the STM images has been reversed as
compared with the TiO2(110) surface. The oxygen
rows on the RuO2(110) surface are protruding
while the ruthenium rows appear dark. In this
case, CO adsorption has been used to show this,
i.e. CO resides in the dark Ru rows. The structural
relaxations as documented in the LEED studies
are similar to the TiO2(110) surface.

There are several experimental results [30–33]
where relaxations are particularly pronounced
[25–27] basically corroborating the theoretical
predictions although the quantitative agreement is
not always good [34–37]. Specifically, the (0001)
surfaces of materials such as Al2O3 [34,35], Cr2O3

[36] and Fe2O3 [37] have been studied with X-ray
diffraction, quantitative LEED as well as with
STM and theoretical methods. Fig. 6 shows the
results of structural determinations for the three
related systems Al2O3(0001), Cr2O3(0001) and
Fe2O3(0001) as addressed above. In all cases a
stable structure in UHV is the metal ion termi-
nated surface retaining only half of the number of
metal ions in the surface as compared to a full
buckled layer of metal ions within the bulk. The

interlayer distances are strongly relaxed down to
several layers below the surface. The perturbation
of the structure due to the presence of the surface
in oxides is considerably more pronounced than in
metals, where the interlayer relaxations are typi-
cally of the order of a few percent [38]. The ab-
sence of the screening charge in a dielectric
material such as an oxide contributes to this effect
considerably. It has recently been pointed out [39]
that oxide structures may not be as rigid as one
might think based on the relatively high energy
needed to excite lattice vibrations in the bulk.

Bulk oxide stoichiometries depend strongly on
oxygen pressure, a fact that has been recognized
for a long time [40]. So do oxide surface structures
and stoichiometries [37]. In fact, if a Fe2O3 single
crystalline film is grown in low oxygen pressure,
the surface is metal terminated while growth under
higher oxygen pressures leads to a complete oxy-
gen termination [37]. Calculations by the Scheffler
group [37] have shown, that a strong rearrange-
ment of the electron distribution as well as relax-
ation between the layers leads to stabilization of
the system. STM images by Weiss and co-workers
[37] corroborate the coexistence of oxygen and
iron terminated layers and thus indicate that sta-
bilization must occur.

Fig. 6. (a) Experimental data on the structure of corundum-type depolarized (0001) surfaces (side and top views). (b) Adapted from

Ref. [24], (c) Refs. [31,32], and (d) Ref. [37].
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Another important stabilization mechanism for
oxygen terminated surfaces proceeds via chemical
means. Charge reduction can occur by replacing
oxygen at the surface by hydroxyls. On the basis of
energetic considerations [41], real crystallites must
be terminated partly by polar surfaces, the charges
of which are reduced by surface OH groups. The
experimental confirmation was delivered much
later [42,43]. For Al2O3 surfaces with oxygen ter-
mination it was shown recently by theoretical
methods that OH termination also leads to the
most stable surfaces [44]. Since hydrogen is diffi-
cult to detect with structural methods [24], vibra-
tional spectroscopies are well suited to study this
aspect. In fact, hydroxyl groups may be used to
modify the chemical nature of oxide surface which
in turn, has consequences for the adsorption of
further material such as metal deposits [45,46]. We
show in Fig. 7 the results of such a hydroxylation
as measured with vibrational spectroscopies. Vi-
brational spectra can be measured either by in-
frared absorption after reflection of infrared light
from the surface and recording the spectra with an
interferometer (Fourier-transform infrared spec-
troscopy, FTIR) or by scattering electrons from
the surface and measuring the loss of energy due to
excitation of vibrations (electron energy loss
spectroscopy, HREELS) [45,46]. In the case of a
thin alumina film on NiAl(110) it was impossible
to hydroxylate the oxide just by water dissociation,
while on a similar film on NiAl(100) [47] forma-
tion of OH from dissociative H2O adsorption oc-
curs. The clean oxide film surface was exposed to
metallic aluminum and then the aluminum was
hydrolyzed via water adsorption to form a hy-
droxyl overlayer [45,46]. In Fig. 7 at the bottom a
HREEL-spectrum showing the hydroxyl vibration
at 465 meV (3750 cm�1) is plotted atop a corre-
sponding spectrum of the clean film. The peaks
below 120 meV are due to the alumina vibrations
[48]. The observed hydroxyl vibration energy co-
incides nicely with the FTIR absorption observed
for the same system. In this case more water was
adsorbed so that a broad band from water clusters
is seen also. The sharp band at 3705 cm�1 is due to
free OH groups at the surface of these water
clusters [49], as they are known from the surface of
ice. In fact, if a thick ice film is grown on the

alumina film this particular vibration is observed
(see Fig. 7). In comparison with literature data [50]
it is now possible to assign the hydroxyl loss on the
alumina surface. According to a review article by
Kn€oozinger and Ratnasamy [50] an OH-vibration
at 3750 cm�1 is characteristic of hydroxyls bridg-
ing aluminum ions both in octahedral, or one in an
octahedral and one in a tetrahedral site. On alu-
mina films grown on a different NiAl substrate
other types of OH species may be formed [47].

2.2. The metal particle–oxide system

So far, we have been considering the clean oxide
surface and its reactivity. In the following, we
consider the modification of the oxide surface by
deposition of metals.

Over the last years several strategies have been
followed [51]. Small metal particles have been de-
posited onto oxide bulk single crystal surfaces,
particularly MgO, and characterized by transmis-
sion electron microscopy (TEM). A transmission
electron micrograph is produced by transmitting
electrons with an energy of several hundred (typ-
ically 200–400 keV) kiloelectronvolts through a
sample using the contrast produced by the electron
density in the system for imaging. Helmut Poppa
has been the pioneer in the field of imaging small
metal particles [52]. Contributions to it have been
recently reviewed by Claude Henry, who himself
was involved in the early TEM measurements [53].
A beautiful example from his group is reproduced
in Fig. 8, showing the crystal shapes of the deposits
with the largest ones being 150 � 150 nm2 in size
[54]. While these efforts were mainly aimed at
preparing small well defined particles, another
strategy is preparing thin metal films on bulk oxide
single crystals, such as TiO2(110) surfaces [55–58].
Several groups [59–61] have started to investigate
metal deposition on TiO2 surfaces. Interesting
initial results concerning metal particle migration,
and oxide migration onto the metal particles have
been obtained [60,61]. Particularly well suited
for the application of STM are metal particles
deposited onto thin film oxide surfaces [12,13,
53,62].

Often, well-ordered alumina films have been
used as substrates. In Fig. 9 we show the result of a
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STM study from our laboratory. The upper left
panel (a) shows the clean alumina surface as im-
aged by a scanning tunneling microscope [63]. The
surface is well ordered and there are several kinds
of defects on the surface. One of them are reflec-
tion domain boundaries between the two growth

directions of Al2O3(0001) on the NiAl(110) sur-
face [48]. There are anti-phase domain boundaries
within the reflection domains, and, in addition,
there are point defects which are not resolved
in the images. The image does not change dra-
matically after hydroxylating the film [45]. The

Fig. 7. Fourier transform IR spectra (IRAS) and electron energy loss spectra (HREELS) of a clean and an OH(þH2O)-covered

alumina film.
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additional panels show STM images of rhodium
deposits on the clean surface at low temperature
(b), and at room temperature (c) [64,65], as well as
an image after deposition of Rh at room temper-
ature on a hydroxylated substrate (d) [66]. The
amount deposited onto the hydroxylated surface is
equivalent to the amount deposited onto the clean
alumina surface at room temperature. Upon vapor
deposition of Rh at low temperature (the protru-
sions shown in Fig. 9b), small particles nucleate on
the point defects of the substrate and a narrow
distribution of sizes of particles is generated. If the
deposition of Rh is performed at room tempera-

ture, the mobility of Rh atoms is considerably
higher so that nucleation at the line defects of the
substrate becomes dominant (features line up with
the light lines in Fig. 9c). Consequently, all the
material nucleates on steps, reflection domain and
anti-phase domain boundaries. The particles have
a relatively uniform size, in turn depending on the
amount of material deposited. If the same amount
of material is deposited onto a hydroxylated sur-
face, the particles (the protrusions shown in Fig.
9d) are considerably smaller and distributed across
the entire surface, i.e. a much higher metal dis-
persion is obtained [45].

Fig. 8. Palladium nanocrystallites on MgO(100) as imaged via TEM [54].
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The sintering process is an interesting subject.
Research on this process is just beginning [64]. A
more basic process is metal atom diffusion on
oxide substrates.

Diffusion studies [67] could profit from atomic
resolution, once it is obtained routinely for de-
posited aggregates on oxide surfaces. While for
clean TiO2 surfaces and a few other oxide sub-
strates atomic resolution may be obtained rou-
tinely, there are few studies on deposited metal
particles where atomic resolution has been re-

ported [68]. An image of Pd metal clusters on
MoS2 is shown in Fig. 10a and exhibits 27 metal
atoms in the cluster. A joint effort between Flem-
ing Besenbacher and our group [69] has led to
atomically resolved images of Pd aggregates de-
posited on a thin alumina film. Fig. 10b shows
such an image of an aggregate of about 50 �AA in
width. The particle is crystalline and exposes on its
top a (111) facet. Also, on the side, (111) facets,
typical for a cuboctahedral particle, can be dis-
cerned.

Fig. 9. Scanning tunneling images (3000 � 3000 �AA2, Al2O3/NiAl(110), Utip ¼ 8 V, I ¼ 0:8 nA): (a) Clean alumina film, (b) after de-

position of 0.1 �AA of Rh at 90 K, (c) after deposition of 2 �AA of Rh at 300 K, and (d) after deposition of 2 �AA of Rh at 300 K on

hydroxylated substrate onto the pre-hydroxylated alumina film.
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While STM reveals the surface structure of de-
posited particles, their internal structure, in par-
ticular as a function of size, is not easily accessible
through STM. In this connection, TEM studies on
the same model systems help [70]. On the basis of
numerous high resolution transmission electron
microscopy (HRTEM) images, it has been possible
to calculate the lattice constants as a function of

particle size [70]. The corresponding plot is de-
picted in Fig. 11. It reveals that the atomic dis-
tances continuously decrease to 90% of the bulk
value at a cluster size of 10 �AA. On the other hand,
the lattice constant approaches the Pt bulk value at
a diameter of 30 �AA. This effect also has been de-
tected for Ta and Pd clusters on the thin alumina
film, but seems to be less pronounced in these cases

Fig. 10. Scanning tunneling image of: (a) an atomically resolved cluster of 27 Pd atoms arranged in two layers on a MoS2 substrate

[68], and (b) an atomically resolved Pd nanocrystallite grown on a thin alumina film [69].

Fig. 11. Lattice constants and interatomic distances of Pt particles grown on Al2O3/NiAl(110) as a function of their size (the hori-

zontal bars represent the difference of the widths and the lengths of the clusters, while the vertical bars are error bars).
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[71,72]. Variations of interatomic distances as a
function of particle size are known from calcula-
tions on isolated clusters and have occasionally
been reported for deposits [73].

The deposits discussed so far were prepared with
the intention to keep the size distribution narrow.
The lateral distribution of aggregates on the sur-
face, however, has not been an issue. If we con-
sider reacting systems, interdiffusion of species
between the particles, i.e. spillover processes, may
become an important issue. Therefore, it may be
desirable to control not only particle size and
morphology but also interparticle distances. Based
on electron beam lithography, Rupprechter et al.
[74,75] have reported the preparation of two-
dimensional arrays of Pt particles deposited onto
amorphous SiO2 layers. Particles of 25–40 nm
average size could be produced as shown in Fig. 12.
The image reveals an average height of 20 nm of
these particles. In these studies [76–80] the average
size is an order of magnitude larger than the par-
ticles imaged in Fig. 10.

The electronic structure of deposited metal ag-
gregates reflects to a certain extent the geometric
structure and vice versa.

Starting from an atomic level diagram, Fig. 13
shows how such a level diagram develops when
more and more metal atoms agglomerate and fi-
nally form a solid with a periodic lattice. Upon
formation of an aggregate from equivalent atoms,
the atomic levels split into cluster orbitals. The
splittings are characteristic of the interatomic in-
teractions. Depending on the interaction strength,
the split levels derived from a given atomic orbital
start to energetically overlap with levels derived
from other atomic orbitals. As long as the system
has molecular character, there is an energy gap left
between occupied and unoccupied levels. This is in
contrast to the situation encountered for an infi-
nite periodic metallic solid as presented on the
right hand side of the figure, where no longer a gap
between occupied and unoccupied levels exists. It
is not hard to envision that, as we enlarge the
number of atoms in an agglomerate, the gap be-
tween occupied and unoccupied orbitals effectively
vanishes. This is the case if the energy gap de-
creases to a value close to the thermal energy in the
system k T .

The question arises: How many atoms are nec-
essary to induce a transition from an insulator to
a metallic cluster? Reports in the literature claim
numbers ranging from 20 to several hundred
atoms in this respect [72,81–92]. One interesting
extrapolation deduced from spectroscopic mea-
surements of the gap of inorganic carbonyl cluster
compounds containing a transition metal kernel
and CO molecules as a ligand sphere as a function
of the size of the metal kernel is shown in Fig. 14
[83]. It suggests that 70 atoms are sufficient to close
the gap. A study from the author’s laboratory on
CO covered Pd and Rh clusters [86,92] yields a
comparable value. In those cases where larger
values have been obtained, the metals were Cu,
Ag, Au, Al or alkali metals [81,82,93]. It is likely
that the specific electronic structure of metals has
an influence on the exact value.

Experiments on electronic structure so far have
dealt with ensembles of clusters and relied upon
the preparation of ensembles with narrow size
distributions. Recording current–voltage curves in
a scanning tunneling microscope for a given posi-
tion (this procedure is called scanning tunneling
spectroscopy), enables the investigation of single
clusters, e.g., aggregates deposited on oxides [94].
Fig. 15 shows typical current–voltage curves for
some aggregate sizes, i.e. Au on TiO2(110) [95].
While the large particles do not exhibit a plateau
near I ¼ V ¼ 0, the smaller clusters do show the
behavior expected for a system with a gap.

The electronic structure of deposited aggregates
has also been probed via optical response [96–98].
Fig. 16 shows the optical absorption as well as
the atomic force microscopy (AFM) image of an
ensemble of small Ag clusters on mica [97]. The
two absorption bands are associated with the op-
tical excitation of a surface plasmon, i.e., a col-
lective excitation of the electrons on a sphere,
which corresponds to the so called Mie plasmon
[6] mentioned in the introduction. There are two
bands because the three possible oscillatory di-
rections in a sphere no longer lead to the same
plasmon energy for a free sphere deposited on a
substrate. The oscillation perpendicular to the
surface appears at higher energy than the two
equal-energy oscillations within the surface plane
[96]. This is illustrated in Fig. 17 where the dipole
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in a sphere is indicated together with its image
dipole in the substrate. The perpendicular dipoles
couple to form a large dipole moment harder to
excite (blue shift), while the parallel dipole couple
to form a reduced dipole moment easier to excite
(red shift). The widths of the bands depend on the
size and the shape distributions of the clusters.
Since there is a stronger variation in lateral shape

than in height the blue shifted band is wider. The
widths are therefore inhomogeneous, i.e., each
cluster exhibits its own shift and the experiment
measures the sum of these. Experiments on either a
monodisperse cluster ensemble of single shape or
experiments on individual clusters would be nee-
ded to investigate the homogeneous widths. Such
experiments have been recently reported by using a

Fig. 12. (a) Transmission electron micrograph of a platinum nanoparticle array on SiO2 (mean particle diameter 40 nm; interparticle

distance 200 nm), (b) Microdiffraction pattern of an individual platinum particle showing its polycrystallinity (spots originating from a

(110)-oriented crystalline grain within the polycrystalline platinum particle are marked by circles), (c) HRTEM micrograph and (c0)

fast Fourier transform of a 25-nm platinum model catalyst particle. (d) AFM image of a platinum nanocluster array after several

reaction-cleaning cycles [74].
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scanning tunneling device [99]. Schematically the
setup is shown in Fig. 18a [100]. The tip is used to
inject electrons into individual Ag clusters, in this
case deposited on alumina for excitation. Then the
light emitted from the clusters upon radiative de-
cay is measured via a spectrometer outside the
vacuum chamber. Fig. 18b shows the fluorescence
spectra as a function of size referring to the specific
clusters in the STM image, which occurs blurred
because it was taken at high tunneling voltage
necessary for excitation. A better representation of
the size distribution of the Ag clusters is imaged in
the second inset in Fig. 18b although even in this
case one has to take account of the fact that due to
tip convolution the actual size is considerably
smaller than the imaged one. The peak shows a
pronounced blue shift as a function of size con-
sistent with observations on cluster ensembles of
varying size. In this context it is interesting to look

at the line widths of the resonance as a function of
size. This is plotted in Fig. 18c. The line width is
smallest for the larger clusters, i.e. 0.15 eV, and
increases to 0.3 eV for the smallest ones studied.
We consider this to be the homogeneous line
width. The fact that it changes following an inverse
cluster radius reveals the influence of the cluster
surface becoming more important for smaller
systems as a channel to deactivate the excited state
through electron-surface scattering without gen-
erating radiation.

In the introduction we referred to the interac-
tion of species from the gas phase with the de-
posited clusters. This is an important issue in
catalysis as well as in understanding sensors.

An advantageous technique to expose a cluster
to a gas and then re-establish ultrahigh vacuum is
FTIR because it provides the resolution to differ-
entiate between various adsorbed species. Again,

Fig. 13. Diagram illustrating the transition from an atom to a metal (EB, binding energy; I1, first ionization energy; e: electron charge;

/: work function; C, X : symmetry points in the Brillouin zone).
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the thin film based systems are particularly well
suited since the metallic support of the oxide films
acts as a mirror at infrared frequencies. It is,
however, also possible to perform such experi-
ments on surfaces of bulk dielectrics as shown by
the Hayden group [101,102].

Wayne Goodman and his group have published
an interesting study of CO adsorption on Pd ag-
gregates on Al2O3 films [94]. The results have been
interpreted as characteristic for the adsorption of
CO on different facets of the small crystalline ag-
gregates. Although this interpretation does not
take into account adsorption on the various defect
sites of the aggregates [86], as pointed out in a
more recent study [103], the data are indicative of
the potential of this technique for the study of size

dependent absorption phenomena. The presence
of adsorbed molecules can change the morphology
of deposited particles because in the presence of
adsorbates molecular species may be found that
detach themselves from a cluster and move across
the surface. Such phenomena are interesting with
respect to redispersing metal on a surface. For
example, a catalyst could have been deactivated by
cluster agglomeration. This process can be re-
versed to a certain extent by the formation of
mobile species which can re-nucleate small metal
particles when treated properly.

The infrared spectrum taken from a Rh deposit
prepared and saturated with CO at 90 K is dis-
played in Fig. 19 (second spectrum) [104]. The
most prominent feature in the stretching region of

Fig. 14. Electronic excitation of lowest energy for several cluster compounds as a function of the number of metal atoms in the cluster

(DEav is the energy gap between occupied and unoccupied electronic states for cluster compounds). Reproduced with permission from

de Biani et al. [83].
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Fig. 16. Extinction spectra of small silver particles in the range of 2 eV < EðphotonÞ < 4 eV. The insets contain: (upper left panel) an

AFM image of the particle distribution and (upper right panel) the normalized size distribution of the particles.

Fig. 15. Current–voltage (b) recorded for Au clusters of various sizes deposited onto a TiO2(110) surface. A typical STM picture of

the system is shown in (a). (Adapted from Ref. [95].)
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terminally bonded CO molecules is a sharp, in-
tense band at 2117 cm�1. This signal has been
shown to arise from isolated Rh atoms trapped at
oxide defects [104]. While this species has been
identified to be the geminal dicarbonyl (Rh(CO)2),
known to be the species involved in metal trans-
port across the surface under reaction conditions,
the nature of the defect site remained unclear.
Features at lower frequencies have been assigned
to molecules on Rh aggregates. In the top spec-
trum the feature of 2117 cm�1 is missing which
means that a rhodium film deposited of 300 K does
not contain isolated Rh atoms due to the higher
mobility at this temperature. This established that
Rh(CO)2 sits in defect sites.

These studies on small Rh particles have been
extended to neighboring elements in the periodic
table. Infrared spectra recorded after deposition of
comparable amounts of Pd, Rh, and Ir and sub-
sequent CO saturation at 90 K are displayed in
Fig. 20. We note differences in the low wave
number region, where vibrational frequencies of
molecules in multiply coordinated sites are found.
As on single crystals, the CO population of such
sites is highest on Pd [105,106], while no such CO
is observed on Ir [107,108].

The differences in the region of terminally bon-
ded CO, however, are much more pronounced. In
the case of Ir, several distinct features are ob-
served. In analogy to the Rh(CO)2 band at 2117
cm�1, the sharp signal at 2107 cm�1 has been at-
tributed to Ir(CO)2 species via isotopic mixture
experiments (not shown). Bands with similar fre-
quencies have been assigned to the symmetric
stretch of Irþ(CO)2 on technical Ir/Al2O3 catalysts
(2107–2090 cm�1) [109] and on the iridium-loaded
zeolite H-ZSM-5 (2104 cm�1) [110]. The appear-
ance of a number of bands at lower wave number
is reminiscent of the 90 K Rh deposits (Fig. 20),
pointing to a comparable nucleation behavior.

In contrast to that, no signs of atomically dis-
persed Pd or of structurally well-defined aggre-
gates are observed. Indeed, the infrared spectrum
is rather similar to that observed on much larger,
disordered Pd aggregates [111]. At the same metal
exposure, the Pd particles are found to be larger
than the Rh aggregates by room temperature
STM.

Infrared spectra of adsorbed CO thus provide
valuable information on the size of metal nano-
particles, as long recognized in the catalysis related
literature.

The literature contains several adsorption stud-
ies, (see for example [112]) employing other probe
molecules such as hydrocarbons but in these cases
reactions come into play which renders the situa-
tion even more complicated.

In recent years some progress has been made
towards developing vibrational spectroscopy in
the presence of a gas atmosphere. Two routes have
been followed, one, the so called polarization
modulated (PM-) FTIR method [113], and sum-
frequency generation as the second one [114–116].
While the first is limited to flat substrates because
it uses alignment and is a linear spectroscopy, the
second one is generally applicable in principle but
is a non-linear spectroscopy. In the latter case it is
difficult to retrieve quantitative information but
the method has the distinctive advantage of being
sensitive only to the interface. For the above rea-
sons it is difficult to apply PM-FTIR to cluster
systems, while the applicability of the latter has
just been demonstrated. On the basis of these
methods one may study whether the ideas devel-

Fig. 17. Schematic representation of the surface plasmon ex-

citations for ellipsoids attached to a solid substrate. The modes

with parallel and perpendicular excitation dipole are indicated

and the resulting spectrum is schematically indicated below.
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oped through studies under ultrahigh vacuum
conditions can be extended to ambient pressures.
Initial results look encouraging [116].

Vibrational spectroscopy on individual clusters
has not been reported yet, but vibrational spec-
troscopy has been performed on carbon monoxide
molecules bound to mass-selected deposited clus-
ters. Heiz and coworkers [117–119] have mass se-
lected in a quadrupole mass spectrometer Pt and
Au clusters and deposited them onto a thin MgO
film grown on a Mo substrate [13]. The assump-
tion is that the clusters when deposited stay as
deposited and the ensemble remains monodis-
perse. So far no one has demonstrated this by
scanning probe microscopies although this should
be possible. Fig. 21 shows FTIR spectra of CO
adsorbed on mass-selectively deposited Pt8 and

Pt20 [119]. While the small Pt8 cluster only exhibits
bridging sites, the larger Pt20 cluster also shows a
band typical for threefold hollow sites on Pt single
crystals. An interesting result has been obtained on
deposited Au clusters, which are, as mentioned
before, also interesting research objects for low
temperature CO oxidation. CO adsorbed on Au8

clusters exhibit an infrared spectrum even at or
above room temperature [120], indicating rather
strong bonding. Fig. 21 contains the correspond-
ing spectrum showing an unusually high CO
stretching frequency. This is a result very different
from CO adsorption on Au single crystal sur-
faces and larger Au particles [121]. The result
could be important to understand why CO can be
oxidized to CO2 at very low temperature on gold
catalysts!

Fig. 18. (a) Schematic diagram of the experimental setup for the photon emission scanning tunneling microscope, (b) photon emission

spectra as a function of particle size. The corresponding particles are marked in the upper left panel. The upper right panel shows a

topological image of a typical cluster covered area. The size dependence of the resonance position of the plasmon excitation is shown in

the inset on the left. (c) Line widths of the observed plasmon excitation as a function of particle size.
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The examples reviewed in this section indicate
that cluster systems are complex and our knowl-
edge on deposited clusters on insulating surfaces
has increased enormously over the last ten years.
Still we are only at the beginning of a crude un-
derstanding of the properties of aggregates and of
the processes involved in their formation. There
are many fascinating experiments one can think of
that could be done on the basis of the knowledge
so far accumulated. Some of these, which are to a
large extent based on speculations, are considered
in the next section in order to motivate more in-
terest and activity in this field as suggested in the
first line of the introduction.

3. Which are open questions and how could they be

answered?

It is evident from the previous sections that the
field is in its infancy and there are still many in-
teresting questions unanswered. In the following
we will examine a series of these questions and
speculate about solutions and experiments to do.
Even though we primarily discuss experimental
aspects, the field can only develop and prosper
through a concerted effort in experiment and
theory. In particular the modern simulation meth-
ods are required to provide insight that cannot be
gained through experiment alone.

Fig. 19. Infrared spectra recorded after CO saturation of Rh deposits at 90 K, along with corresponding room temperature STM

images (500 � 500 �AA2). Top: 0.057 ML Rh deposited at 300 K, middle: 0.057 ML Rh deposited at 90 K and bottom: 0.057 ML Rh

deposited at 300 K, followed by the same exposure at 90 K.
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Before we become more specific let us identify
areas of interest. Obvious ones are:

• Structure (geometric and electronic, including
magnetic) at the atomic level of the metal parti-
cle–oxide interface under ambient conditions

• Control of structure and morphology
• Chemistry at the atomic level on the cluster
• Ultra fast dynamics and coherent control in and

on clusters

There is information both on the oxide as the
substrate as well as on the deposited metal parti-

cles. Although this may not yet be sufficient, there
is very much less known on the metal particle–
oxide interface [122]. Some of the important issues,
however, are connected with this knowledge which
renders the investigation of the metal particle–
oxide interface an important one. Consider, as in-
dicated in Fig. 22, a particle as an idealized cubo
octahedron. Would it not be interesting to know
whether the structure of the support underneath
the particle is the same as the uncovered substrate?
How is the electronic and geometric structure of
the metal atoms in the aggregate in direct proximity
to the substrate altered and how deep into the

Fig. 20. Infrared spectra of Pd, Ir, and Rh deposited at 90 K and saturated with CO at the same temperature.
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particle does this alteration reach? For example,
has the particle sufficient metal character to screen
the changes at the interface? Is the region at the
circumference of the particle colored distinctively
in Fig. 22, including metal particle and sub-
strate atoms, characterized by particular electronic
properties that could be of relevance for catalytic

reactions? Generally speaking, we would like to
know the geometric structure of the entire deposited
particle–substrate complex, and in addition the dis-
tribution of electrons within the system. Can this
information be obtained? The answer is: Very
likely, if we assume that certain tools become
available! Two experimental methods will be of
central importance: electron microscopy [123], and
X-ray structure determination with very intense
light sources, such as synchrotrons [124] and in the
future free electron laser (FEL) sources [125].
Other spectroscopic methods based on intense light
sources, such as non-linear optical methods [126]
could be applied using high energies in the UV,
infrared, and possibly in the XUV regions. X-ray
absorption [127] employing the high degree of lin-
ear and circular polarization of synchrotron light,
as well as scanning probe microscopy can also play
a role. Polarization dependent spectroscopic mea-
surements provide key tests of electronic and
magnetic structure [128].

In principle, electron microscopy can do a good
part of the job! It allows the selection of an indi-
vidual object in the sample, determines local

Fig. 21. Infrared spectra of CO covered mass-selective de-

posited Pt8, Pt20 and Au8 clusters on a thin MgO(100) film

[119,120].

Fig. 22. Schematic representation of a cubo octahedral metal cluster on an insulating substrate. See also text. Chemically different sites

on the cluster surface are colored differently.
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structure with atomic resolution, and can be ap-
plied to cross-sectioned samples, so that we can
image directly the interface. But: Electron mi-
croscopy is destructive, and is difficult to do under
the influence of gases. It has chemical identifica-
tion power, though limited, and may not be the
method of choice to investigate electronic struc-
ture. Even today it is particularly difficult to image
surfaces at atomic resolution with electron mi-
croscopy. For the purpose of surface imaging
scanning probe microscopy is the method of
choice. Photon based methods are by definition
less destructive than electron based methods.
Moreover, they can be used in the presence of a
gas atmosphere, although care has to be exercised
in this case as well. If it is possible to prepare
uniform arrays of islands which are crystalline,
––and some progress has already been demon-
strated––then X-ray scattering and X-ray standing
waves [129] are the promising tools to investigate
the structure of deposited particles even under
ambient conditions. If one had coherent X-rays
from an X-ray laser [130] the investigation of
structure and dynamics under ambient conditions
would be in reach. With the advances recently
made to shift the wavelength of coherent light into
the XUV range by building free electron lasers, for
example, the one at HASYLAB in Hamburg, a
new generation of structure related experiments,
including holography, would become available.
The entire field of non-linear optical techniques,
currently used in the lower frequency regimes
could be applied at high energies opening up the
possibility to selectively study interfaces similar to
what is done at present in vibrational spectro-
scopy. These techniques could be used to study the
metal particle–oxide interface. Photon based mi-
croscopy can benefit largely from the advent of
high brilliance sources. There are several projects
under way already to push the limits of lateral
resolution to below 10 �AA [131–133]. Also, X-ray
optics is progressing with X-ray microscopy
pushing the limits of resolution. In combinations
with scanning probe microscopy, performed also
under ambient conditions––a technology which is
just being tested––experimental techniques would
be available allowing us to answer the above
question: Yes!

As has been indicated above, and alluded to on
several occasions in the previous chapter, it is
of utmost importance to be able to control structure
and morphology of cluster formation by under-
standing the elementary steps in the processes,
such as metal diffusion and aggregate migration
on insulators. A good understanding of these
processes would help to improve theoretical
modeling studies. It is not known in detail how a
single metal atom diffuses across an insulator
surface. How does this process compare with
metal-on-metal diffusion, where experimental
studies have been successfully undertaken [134]?
How does a cluster migrate on an oxide surface,
and how does the concerted movement of atoms
across the surface occur? Can a cluster dig itself
into the substrate? Such questions need to be an-
swered experimentally. The answers to these
questions are intimately connected with knowing
the real, i.e., defect-filled structure of the oxide
substrate in the surface region. Scanning probe
microscopy can play a decisive role in unraveling
the number and distribution of such defect sites as
well as their mobility. Whether these techniques,
perhaps used in an inelastic tunneling mode, can
be employed is an open question at present. It is
conceivable to try to observe the vibrations at
these local sites, similar to the observation of
vibrational modes reported recently [135]. Defi-
nitely, photoelectron spectroscopy and vibrational
spectroscopy are tools that can be used. The for-
mer can be combined with microscopy so that
certain areas of the sample could be selected. Vi-
brations at such defects will have rather low fre-
quencies so that traditional infrared techniques
may be difficult to apply. There is certainly a
chance for synchrotron based IR techniques [136].
If Raman spectroscopy could be developed into an
even more sensitive technique to allow the study
of species on single crystalline sample surfaces at
low concentration, this would be an ideal tool
[137,138]. There is also room for field ion mi-
croscopy since it has been shown to be applicable
to study diffusion of individual metal atoms on
oxide films.

Yet another aspect that has to be considered,
when the area of structural control is discussed, is
chemical modification of the substrate and self
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organization of the metal deposit. It is very im-
portant for the development of the field that pre-
parative techniques are established, and tested.
That the study of crystal growth remains a field of
intense study to guarantee the availability of
samples of highest quality. The examples discussed
in the previous chapter illustrated how chemical
modification can change the distribution, the sin-
tering properties, and also the electronic structure
of particles. This topic is at the heart of catalysis.

The third area addressed at the beginning of this
chapter, namely how to study chemistry on clus-
ters is another topic connected with of the exam-
ples mentioned in the introduction. Of course,
again, of particular importance is this area for
catalysis. We would like to aim at a truly size de-
pendent understanding of the chemistry on individ-
ual clusters. This is meant in the broadest sense,
namely understanding the making of a surface-to-
atom or -molecule bond, breaking it, and reacting
two species with each other, whereby the reaction
may be triggered through thermal energy or other
means, for example photochemically. Through a
combination of tunneling microscopy and tunnel-
ing spectroscopy this is possible, and experiments
are actually under way. There is no reason why the
single molecule experiments via inelastic tunneling
spectroscopy performed on single crystal metal
surfaces could not be repeated on deposited clus-
ters. By controlling the site of the molecule on the
aggregate, i.e., on the terraces (Fig. 22), on the
edges or on the corners one could study properties
not only cluster specific but also site specific. In
fact, it is to be expected that on small clusters
edges or corners have a different influence than on
large clusters, even if the overall symmetries are
similar. It was demonstrated in the previous sec-
tions that the response of a cluster to light depends
on the particle size. A consequence of this is that
photochemistry depends on particle size, a fact
that has already been demonstrated [139]. Still,
however, there is a lot to be done in this area.
While experiments on individual clusters have a
certain appeal, experiments on ensembles of well
defined size should not be forgotten. Molecular
beam experiments can be decisive to provide
quantitative information on kinetic parameters, so
important in applications [140–142]. The big ad-

vantage is that all structural parameters are con-
trolled simultaneously at the atomic level. In this
arena the future has already begun.

One of the important questions in chemistry in
general is: How does a molecular bond break [143–
145]? This happens on the time scale of a molec-
ular vibration, i.e., a picosecond. However, since
energy dissipation via electron–electron interac-
tion happens on the even shorter time scale of a
few femtoseconds, it is necessary to perform ultra
fast spectroscopic experiments if we want to un-
derstand the dynamics of making and breaking of
bonds on clusters at the atomic level. Such experi-
ments have been performed in the gas phase [146],
and there are experiments on single crystal metal
surfaces [147] but next to nothing is known for
aggregates on insulating substrates. On the basis of
what has been discussed we can expect that there
are interesting size dependent effects. Again, the
sample quality plays an important role to be able
to perform ensemble averaging experiments. It is
possible to probe such processes by performing
photoelectron spectroscopy after absorption of
two time delayed photons [147]. Here the photo-
electron is emitted after absorption of two pho-
tons, whose pulse widths are of the order of
femtoseconds. The delay between the absorption
events of the photons can be chosen and varied,
which in turn defines the time resolution. Since the
detected particle is an electron photoelectron mi-
croscopy could be used to try to detect these
processes even with spatial resolution. If it were
possible to bring down the spatial resolution to the
size of one cluster one could do ultra short ex-
periments on individual clusters. Another route is
to use an STM tip as an electron detector to bring
down the spatial resolution [148]. In fact feasibility
studies in this area are under way. In order to
perform such experiments in the presence of a gas
atmosphere electron based experiments may not be
the optimal choice. Optical microscopy using ul-
tra-small glass fiber tips to excite and/or record a
spectrum (so-called scanning near field optical
microscopy, SNOM), if developed further, may be
an option, although it cannot be foreseen that with
this method a single cluster can be selected out of a
relatively dense cluster arrangement [149]. Usually,
SNOM assumes that the investigated sample area
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contains only a few species. It is clear, however,
that ultra fast spectroscopy combined with atomic
resolution of reacting systems will be one of the
most fascinating areas in chemical physics in these
systems.

We have briefly discussed in the last section some
open questions and strategies to possibly solve
them. This catalogue of questions and answers can
be extended almost infinitely. The specific areas
touched here are considered to be opening up av-
enues to perform fascinating basic research that
might be directly linked to applications.

4. Final remark

The attempt has been made to answer the simple
question, why is the study of metal aggregates on
oxides, described in this paper, an interesting
subject. I have tried to put the field in a perspective
that one can enter through applications from ev-
eryday life. The examples were chosen to docu-
ment the current state of the art, and at the same
time demonstrate that still a lot has to be achieved.
In the third section we explore a whole variety of
new, demanding experiments, which were chosen
such, that in all likelihood they could be done given
that the necessary tools are available and the sci-
entific community receives continuous support,
and, most importantly, there is a sufficient number
of young talented scientists who are willing to take
up a challenge.
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