Photochemie von Methan auf Pd/Al₂O₃-Modellkatalysatoren: Kontrolle der Photochemie auf Übergangsmetalloxidflächen³⁹,⁸

Kazuo Watanabe, Yoshiyasu Matsumoto, Margarethe Kampling, Katharina Al-Shamery und Hans-Joachim Freund³

Professor Manfred Baerns zum 65. Geburtstag gewidmet

Aufgrund der ökonomischen und ökologischen Wichtigkeit der effizienteren Nutzung von Erdgas wurde die thermische Aktivierung der C-H-Bindungen von Methan intensiv untersucht. Insbesondere die Umsetzung zu Methanol und anderen Kohlenwasserstoffen ist von großem Interesse.³⁷ Berücksichtigt die photochemische Aktivierung wurde kürzlich entdeckt, daß auf Pt(111) und Pd(111)-Einkristalloberflächen adsorbiertes Methan mit 193-nm-ArF-Excimer-Laserlicht (6,4 eV) dissoziiert werden kann.⁶,⁸,⁹,¹⁰ Obwohl Methan in der Gasphase nur Licht kürzerer Wellenlängen als 145 nm (8,55 eV) absorbiert,¹¹ diese starke Verschiebung von mehr als 2,1 eV ist überraschend, wenn man berücksichtigt, daß die Energie der Bindung an die Oberfläche nur 230–250 meV beträgt. Bisherigen Experimenten zufolge spielen die elektronischen Zustände der Metalloxidfläche eine wichtige Rolle bei der Anregung von Methan.³⁷,¹² Es unterscheiden sich Photoreaktionseffizienz und photoinduzierte Dynamik bei Pd(111) und Pt(111) als Ergebnis der Unterschiede in der elektronischen Oberflächenstruktur.¹⁰

Kann Methan auch auf Übergangsmetalloxidern photo-dissoziert werden? Wie hängt dann die Photochemie von der Clustergröße ab? Dies sind Fragen, mit denen wir uns im folgenden beschäftigen wollen. Wir benutzen für die Untersuchungen einen gut charakterisierten Modellkatalysator aus Pd-Clustern verschiedener Größe, die auf einem epitaktisch gewachsenen Al₂O₃-Film auf NiAl(110) deponiert waren.¹³,¹⁴ Es konnte gezeigt werden, daß die Adsorptionszustände und die Photoreaktionen (bei λ = 193 nm) von Methan stark von der Clustergröße abhängen.

Pd-Atome wurden in einem kommerziellen Ofen durch Elektronenbeschluß von einem Pd-Draht verdampft. Sie wurden bei Raumtemperatur (300 K) auf dem Al₂O₃-Film abgeschieden und wuchsen dort als dreidimensionale Cluster auf, die vorwiegend (111)-Terrassen bilden.¹⁸ Die Cluster, die in dieser Studie untersucht wurden, hatten mittlere Durch-
messer von $37 \pm 16 \text{ Å}$ (abgeschiedene Pd-Schicht von $1.4 \pm 0.3 \text{ Å}$ nach Schwingquarzwaagenmessung), $49 \pm 10 \text{ Å}$ (Pd-Schicht von $2.1 \pm 0.4 \text{ Å}$), $65 \pm 10 \text{ Å}$ (Pd-Schicht von $3.5 \pm 0.7 \text{ Å}$) und $73 \pm 10 \text{ Å}$ (Pd-Schicht von 7.14 Å), wie durch SPA-LEED-Messungen bestimmt wurde.

Abbildung 1 zeigt die TPD-Spektren für deuteriertes Methan (m/z 20; CD₄) von Pd-Clustern belegt mit 0.5 L CD₄ bei 40 K. Die Zahlen an den Kurven bezeichnen die mittlere Dicke der abgeschiedenen Pd-Schicht. Die Temperatur, bei der das Maximum der Desorptionsgeschwindigkeit liegt, steigt von der Clustergröße an (von 52 K für eine 0.4-Å-Pd-Schicht auf 64 K für eine 7-Å-Pd-Schicht), d.h., daß die Wechselwirkung von Methan mit den großen Clustern stärker ist. Die gestrichelte Linie entspricht dem TPD-Spektrum einer Pd(111)-Einkristalloberfläche durch Belegung mit 0.5 L CD₄ in einer anderen Skala. Es wurden unterschiedliche Aufheizgeschwindigkeiten verwendet: 0.5 K/s für die Cluster und 0.4 K/s für den Pd(111)-Einkristall.

Abbildung 3a ist der relative Anteil β an rekombinativ desorbiertem CD₃H ($\beta = B/A_{B}$; B = integrierte Fläche unter der CD₃H-Desorptionskurve nach der Bestrahlung, $A_{B} = $ integrierte Fläche unter der CD₃H-Desorptionskurve vor der Bestrahlung) als Funktion der mittleren Pd-Schichtdicke aufgetragen. Diese Darstellung zeigt, daß die Photodissoziation nur auftritt, wenn die Clustergröße einen bestimmten Grenzwert überschreitet (mittlerer Clusterdurchmesser zwischen 37 und 49 Å). Jenseits dieses Grenzwertes steigt der relative Anteil an photodissociertem Methan mit der Clustergröße.

Die Methanabdeckung wird nicht nur durch Photodissoziation, sondern auch durch Photodesorption verringert. Abbildung 3b zeigt eine Auftragung der relativen Abnahme der CD₄-Bedeckung α ($\alpha = 1 - A/A_{0}$; $A_{0} = $ integrierte Fläche unter der CD₄-Desorptionskurve vor der Bestrahlung, $A = $ integrierte Fläche unter der CD₄-Desorptionskurve nach der Bestrahlung mit 1.5×10^{19} Photonen pro cm²) als Funktion der mittleren Pd-Schichtdicke. Die relative Abnahme der CD₄-Bedeckung steigt bei kleiner werdender Clustergröße an. Die geringe Abnahme bei den großen Clustern ($\geq 40 \text{ Å}$) läßt auf
Abbildung 3. a) Darstellung des relativen Anteils β der CD2H-Desorption ($\beta = B/A_b$, B-integrierte Fläche unter der CD2H-Desorptionskurve nach der Laserbestrahlung, A_b-integrierte Fläche unter der CD2-Desorptionskurve vor der Bestrahlung) als Funktion der mittleren Pd-Schichtdicke c; b) Darstellung der relativen Abnahme der CD2-Bedeckung a ($a = 1 - A/A_b$, A-integrierte Fläche unter der CD2-Desorptionskurve nach der Bestrahlung, A_b-integrierte Fläche unter der CD2-Desorptionskurve nach der Bestrahlung mit 1.5 x 109 Photonen pro cm2 bei 193 nm) als Funktion der mittleren Pd-Schichtdicke c. Mittlere Pd-Schichtdicken von 1.4, 2.1, 3.5 und 7 Å entsprechen mittleren Clustergrößen von 37, 49, 65 bzw. 73 Å (SPA-LEED-Messungen).

Der angeregte Zustand des Methan/Pd-Cluster-Systems ist wahrscheinlich ein Ladungs-Transfer-Zustand CH$^+_4$ – M$^+$ (M = Metall, 0 < δ < 1), in Übereinstimmung mit den Ergebnissen von Ab-initio-Rechnungen für CH$_4$/Pt$_n$\[23\] und CH/Pd_n-Cluster\[24\] ($n = 1$–10). Akihiga et al.\[23, 24\] berechneten die angeregten Zustände der Clusterniveaus für optimierte Grundzustandskonfigurationen. Der verantwortliche angegarte Zustand für die Dissoziation zu CH$_3$ + H wird durch eine Mischung des antibindenden Rydberg-Zustandes von Methan (10 eV oberhalb des HOMO von Methan in der Gasphase) mit unbesetzten elektronischen Zuständen des Metalls gebildet. Die Anregungsenergie für die Photodissoziation wird mit zunehmender Zahl der Metallatome pro Cluster bis auf 10 auf ca. 7 eV verringert. Die Anregungsenergie hängt stark von der Clustergröße ab, da die Delokalisierung der Elektronen im Metall eine wichtige Rolle für die Stabilisierung des Ladungs-Transfer-Zustandes spielt.\[23\]

Die Adsorptionszustände, die Photodissociation und die Photodesorption von Methan bei 2 = 193 nm auf Pd-Clustern unterschiedlicher Größe auf dünnen epitaktischen Al$_2$O$_3$-Filmen weisen eine starke Größenabhängigkeit und große Unterschiede zu den Verhältnissen auf einer Pd(111)-Einkristalloberfläche auf. Diese Ergebnisse zeigen, daß Metallcluster unterschiedlicher Größe und Form einen einzigartigen Weg bieten, um photochemische und thermische Reaktionen von Kohlenwasserstoffen auf Metalloberflächen zu kontrollieren.

[17] 1 Langmuir (Symbol L) entspricht 1×10^{-6} sTorr $= 1.33 \times 10^{-4}$ mbar.
[18] Bei dieser Bedeckung wird eine $(\sqrt{3} \times \sqrt{3})R30^\circ$-LEED-Überstruktur von Cd auf Pd(111) beobachtet.[9]
[19] Die typische Bestrahlungsbedingung war 2.5 mJ cm$^{-2}$ pro Puls bei 4 Hz Wiederholrate und Einfall der Strahlung normal zur Oberfläche.