Volume 68, number &

CHEMICAY PHYSICS LETTERS

1 December 1979

CONNECTION BETWEEN THE MANNE—-ABERG THEOREM AND A SUM RULE
DERIVED IN THE FRAMEWORK OF THE GREEN'S-FUNCTION FORMALISM

Dietmar SADDEI, Hans-Joachim FREUND and Georg HOHLNEICHER

Lehrstrehl fitr Theoretische Chemie der Universitat zu Koln. Cologne. Germany

Received 6 August 1979; in final form 17 September 1979

A sum ruie for jonization potentials. similar to the Manne—Aberg theorem, is derived in the framework of 2 many-body
Green’s-function formalism. This sum rule is shown to be valid under mainly two conditions: (i) the constant term and the
affinity poles of the self-energy part have to be neglected; (ii) the final state wavefunction has to be separable in a free-
electron and an (V' — 1)-electron part. The latter assumption is discussed in connection with the sudden approximation

which is not used for the derivation of the new sum rule.

1. Introduction

In its most simple form the one-particle picture
leads to a one-to-one correspondence of observable
ionization processes and occupied orbitals. Due to
Koopmans’ theorem [1] the ionization potentials 1,{.0),
which correspond to these processes, are approxi-
mated by

IO =—¢ . ¢}

Satellite structures, often observed in connection with
inner shell ionization [2] are not compatible with this
simple picture. In the one-particle scheme these satel-
lites with ionization potentials 7, ,g") and relative intensi-
ties t,g"), the intensity of satellite/intensity of ““main
peak™, are interpreted as single and multiple excita-
tions accompanying the electron emission.

The loss of the above-mentioned one-to-one corre-
spondence was restored to some extent by Manne and
Aberg [3]. These authors introduced a sum rule in
which 7 é_O) is replaced by a weighted averagz over dif-
ferent final states

— e =IO + 25 (LY -2 )y @)y (3)
n+0

Here the square of the matrix element, which is the

projection of the ion-state wavefunction [V, (N —1})

on the Koopmans-state 1‘1’2’ ~1), corresponds to the
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relative intensity t,f.") of the satellite line (it should be
mentioned that the “main peak” with {P Ilgo) is not
always related to the peak with the largest observed
intensity). Eq. (2) was derived under the following
two approximations:

(i) Application of the sudden approximation and
separation of the final state wavefunction in a free-
electron and an (V— 1)-electron state. These different
approximations are often thought to be completely
equivalent (see below).

(ii) Assumption of constant one-electron transition
moments.

Due to the latter approximation (ii) the resulting
transitions are supposed to be controlled by monopole
selection rules.

Manne and Aberg [3] explicitly state in their paper
that the sudden approximation is not applicable to
cases where the energy of the exciting radiation is
close to threshold, and for ionizations from the valence
shell. This is in line with a detailed comparison of the
sudden versus adiabatic approximation by Meldner
and Perez [4] who arrive at the conclusion that when-
ever the sudden approximation is appropriate the
ionized system is probably “shaken”, while in the lim-
it of the adiabatic approximation the system ends up
in a single eigenstate of the ion. From this it was sug-
gested that one has not to expect considerable satellite
structure in UPS spectra. Recent experiments, however,
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on small molecules using He (II) excitation have re-
vealed strong satellite structures in the region of inner
valence shell ionization [5]. These structures could be
well interpreted in terms of many-particle effects
using a theory which is mainly based on a Green’s-
function formalism [6—8]. As this formalism is essen-
tially based on the adiabatic approximation [9] the
question arises, whether a sum rule similar to the
Manne—Aberg theorem [3] can also be derived for the
valence shell region. In connection with the discussion
of the extended Koopmans theorem [10], Pickup [11]
already indicated that in the framework of the super-
operator formalism. a similar sum rule may be derived.

2_ Formalism

We start here with the well-known expression for
the one-particle Green’s function

xm ym
NV

G, ()=27—E2_4

pq( ) n (.;J—In—-iO*'

() y ()
Yp Yq

- (3)

m w—A,, +i0*

with

S, O | = AR
X0 = (U, iWg) . Y = (Tyla, IENTD,

nt

using the usual nomenclature [12]. The ionization
potentials I, and electron affinities 4,, are found via
the inverse Dyson equation. Numerically they are
evaluated in good approaimation to the exact resulis
by assuming G to be diagonal [7.13]. In the case of
diagonal G the IP’s / ,f”) are related to the negative
roots of

& — €. -Zkk(w)=0' (4)
The corresponding relative intensities t{,”) are given by
PO =xM XD = (I Vg fw )2 5)

To derive these results, two approximations have been
used which are the same as in the treatment of Manne
and Aberg:

(i) A separation-ansatz is used for the final state
wavefunction.

(i1) The one-electron transition moments are taken
to be constant.

Following Cederbaum [14], the exact self-energy
part can be written as
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P/
Zkk(w)—Akk+ , w—K,—+ 7 (.a—L]-’ (6)

where K; is the jonization pole of Z and L; the af fini-
ty pole of . For numerical applications the constant
term A4, is set equal to zero.

By complete induction the evaluation of the roots
of eq. (4) is equivalent to diagonalisation of the fol-

lowing matrix M;.:

I—Ek Ve

Q)

If one starts from a Cl-variation ansatz
Y1y = [cgz),,k + _Z)Ic].(;;},a;‘a,,, a ] Wye).  (8)
jm

a matrix can be derived [15] which is identical to the
upper left block of the matrix M. This shows that the
ansatz (8) leads to the negiect of the influence of the
L;and W; on e (which is equivalent to a complete
neglect of ground-state correlation [13]). In adopting
this approximation we use a completely uncorrelated
ground state and restrict our further discussion to the
submatrix Mz’b, It then follows from egs. (5) and (7)
that

PP =112 . ©®)

with the normalization condition
2ipM=1. 10)
n

If the nith eigenvalue of MLS_ub is denoted E;! it follows
that

& =22 pPED . an
n

Insertion into eq. (10) leads, together with eq. (5), to

& =E® _ ,;é"o N Ng [Ty (B — ED), (12)
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a result which is completely equivalent to the Manne—
Aberg theorem [3]. Evidently a similar formula is val-
id for electron affinities if the influence of the ioniza-
tion poles is neglected. It should be mentioned at this
point that the special type of configurations which
are included in the CI ansatz (8) have not been used
to obtain the above expression.

The equivalence between our results and those of
Manne and Aberg are mainly induced by two approx-
imations:

(i) The constant term and the affinity poles of the
self-energy part are neglected.

(ii) The final-state wavefunction is separated into
a free-electron wavefunction and a wavefunction for
the (V — I)-electron system.

Without doubt the first approximation is justified
for core ionizations where the energy difference be-
tween €. and L; is always large. For valence-shell ion-
izations its applicability depends to some extent on
the magnitude of the HOMO—LUMO gap, but for the
inner part of the valence shell it is certainly not too
bad.

The more important approximation is the second
one. Physical intuition suggests a strong connection
between the separability of the final-state wavefunc-
tion and the sudden approximation: The separation is
the more reliable the higher the energy of the emitted
particle is an:d the sudden approximation is the better
the faster the perturbation takes place. As a conse-
quence, it is often assumed that the separation is in-
herent in the sudden approximation. From the formal-
istic point of view this is, however, not true. The sud-
den as well as the adiabatic approximation is defined
via the time evolution of the hamiltonian [4,16] which
does not necessarily lead to a separation of the final-
state wavefunction. Consequently, this separation has
to be introduced as an independent assumption. The
similarity of results derived either in the framework
of the sudden or in the framework of the adiabatic
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approximation, as shown in this letter. clearly reveals
that it is not the special type of perturbation theory
which is respounsible for these results but the common
assumption of a separable final-state wavefunction.
For further investigations it should be attended more
precisely that this latter assumption is not directly
connected with the sudden approximation.
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